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ABSTRACT 

 

A new noninvasive nearfield electromagnetic imaging (EMI) 

system for highly coherent and compressively sensed (CS) 

data at only few sensing positions is presented in this paper. 

Principal component analysis (PCA) in combination with 

spatial CS and background subtraction is implemented for 

the enhanced imaging of highly dispersive and coherent 

target space. The proposed imaging system is applied by 

forming an incoherent dictionary, which is later tested and 

validated for head imaging of single and multiple brain 

tumor targets using CS based sparse recovery. The head 

imaging model containing the tumor with an applicator 

antenna array around it is designed using CST Microwave 

Studio. Consequently, enhanced imaging results reveal the 

potential of the developed imaging system. 

 

Index Terms—Principal component analysis, nearfield 

imaging, electromagnetic imaging, head imaging, 

compressed sensing, sparse recovery 

 

1. INTRODUCTION 

  

Noninvasive electromagnetic imaging (EMI) for targets in 

the nearfield using radio and microwave frequencies is an 

attractive research area. Therefore, it has various industrial, 

security and biomedical applications such as: underground 

object detection, nondestructive testing, security inspection 

and medical diagnostic and imaging [1-3]. Moreover, these 

all applications benefit from the penetration ability of EM 

signal pulses of radio and microwave frequencies. Indeed, 

EMI using radio and microwave frequencies provides simple 

and inexpensive systems by using non-ionizing EM fields. 

The main objective of the work presented in this paper 

is to propose a new noninvasive nearfield EMI system for 

highly coherent, compressively sensed (CS) data at only few 

sensing positions. The proposed system is applied and tested 

here for the enhancement of head imaging. As, the contrast 

in electrical properties for cancerous and healthy tissues has 

been used in breast tumor imaging [1, 2]. However, head 

imaging has proven to be more challenging [3]. This is due 

to the geometrical complexity of the head and the higher 

dispersive material properties of the brain tissues compared 

to that of breast tissues. Therefore, resulting in higher 

attenuations for the propagation of EM signal pulses. 

Furthermore, the received scattered time-domain signals at 

the sensing positions are extremely weak due to higher 

attenuations incurred. Thus, these received signals for 

different possible tumor target locations have very small 

difference. This results in a dictionary formation with 

maximum spatial coherence making it difficult to 

differentiate between different possible tumor locations.  

Moreover, wideband transmitted EM signals results in 

large amounts of scattered data for materials with higher 

dispersive properties such as: brain, grey matter and 

cerebrospinal fluid (CSF).  This results in large amounts of 

data to be collected at a large number of sensing positions. 

This problem of complex and highly coherent data 

collection needs to be addressed. Advance signal processing 

is thus necessary to extract useful information from highly 

coherent and compressively sensed data at few sensors.  

In this paper, principal component analysis (PCA) in 

addition to spatial compressed sensing (CS) and background 

subtraction is implemented to overcome above mentioned 

problems [4, 5]. Consequently, overall imaging system 

herein consists of an applicator antenna array, head imaging 

model, data collection setup and a post processing setup 

which is implemented to process and invert the collected 

data to have enhanced imaging of highly dispersive and 

spatially coherent target space.  

This paper is presented as follows. The head imaging 

model for recording of receiving signals for tumor anomaly 

by an applicator antenna array is described in Section 2. 

Compressively sensed incoherent dictionary is formed in 

Section 3, which is required for sparse imaging using CS in 

Section 4. The enhanced imaging results are presented in 

Section 5 with conclusions in Section 6. 

 

2. HEAD IMAGING MODEL 

 

The head imaging model is designed using advanced 

computational and electromagnetic (EM) simulations in CST 

Microwave Studio (MWS). The head arrangement consists 

of four layered cylindrical shapes. In this, the first cylinder 
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represents average brain tissue with a radius of 80 

millimeter. Likewise, second, third and fourth cylinders 

represent the grey matter, cerebrospinal fluid (CSF) and 

skull and have a radius of 84, 89 and 94 millimeters 

respectively as shown in Fig. 1. Moreover, this head 

configuration contains the tumor anomaly inside it as shown 

in Fig. 1. Henceforth, the dispersive material properties are 

assigned to the tumor according to the contrast used in [6], 

which is 2:1 relative to the surrounding brain tissue in the 

electrical conductivity and 1.6:1 in the relative permittivity.  
 

 
 

Fig. 1. Head imaging model with tumor and antenna array.  

Horn antenna is used as elements for the applicator 

antenna array as shown in Fig. 1. Furthermore, a wideband 

EM signal of the Gaussian sine pulse is used for the 

transmission of EM energy by the excitation of applicator 

antenna array elements. Accordingly, the operational range 

of wideband frequencies is selected from 300-3000 

megahertz, as this gives a good compromise on resolution of 

the reconstructed image, penetration for EM signals and the 

antenna size. Consequently, the input signal pulse covering 

the operational frequency range is shown in Fig. 2a.   

The materials used herein like brain tissue, grey matter, 

cerebrospinal fluid (CSF) and skull are all dispersive. Thus, 

these materials need to fit a certain dispersion model to have 

wideband material behavior for the operating frequency 

range. Therefore, an nth order dispersion-fitting model is 

applied herein. The sample points assigned according to the 

values reported in the literature [7] and their related fitting 

curves are shown in Fig. 2b and 2c for brain tissue. 

Similarly, other materials are fitted to have dispersion-fitting 

curves for operating wideband frequency range.  

The received time-domain signals are collected 

compressively at only six sensing positions in the space. 

Therefore, the applicator antenna array consists of only six 

elements as shown in Fig. 1.  

 

   
    (a)               (b)                       (c)    

Fig. 2. (a) Input time-domain signal for excitation of array elements and (b) and (c) dispersion-fitting curves for brain tissue. 

A sample of the received time-domain signal collected 

at an element of the applicator antenna array is shown in Fig. 

3a. Furthermore, the received time-domain signals at each 

element can be recognized by four parts [8] as indicated in 

Fig. 3a: the coupled signal from elements of the applicator 

antenna array, the reflected signal from skull, CSF, grey 

matter and brain tissue layers, the tumor reflections and the 

clutter. 

 

3. INCOHERENT DICTIONARY FORMATION 

 

3.1. Background Subtraction  

 

The proposed Imaging system treats the imaging problem 

here as a dictionary selection problem. Therefore, the 

dictionary is formed by discretizing the target space. Thus, 

the discretization results in a finite set of possible tumor 

locations Β = {β1, β2, ….. , βN} where N is the target space 

resolution and each βj is a 3D location with cylindrical 

coordinates [rj, θj, zj] but here zj is made fix at origin. 

The received time-domain signal at each element of the 

antenna array as one given in Fig. 3a is preprocessed for the 

background and other reflections subtraction. It can be seen 

that due to the large attenuations presented by the layers 

with higher dispersive material properties in head model, the 

resulting signal in Fig. 3b after subtraction is extremely 

weak having very small magnitudes. However, still there are 

few samples around 25% of the total samples, which are 

useful for the extraction of information about tumor 

presence.  
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Fig. 3. Received scattered time-domain signal at an array element (a) before and (b) after background and other reflections 

subtraction. The difference signal for two random observations in dictionary (c) before and (d) after PCA implementation.    

Therefore, considering the received time-domain signal 

to be described by λ-samples for each array element, only 

the useful samples are selected for the analysis resulting in 

signal with ρ-samples (ρ=0.25λ) for each element. This 

preprocessing is repeated for all L elements to synthesize a 

single observation signal, described by Ρ samples as:  
 

           Ρ = [ρ1, ρ2, …. , ρL]T,          where T=Transpose    (1) 
 

The entries in the dictionary are formed by 

implementing Eq. 1 for only few of the total N discrete 

possible tumor locations, resulting in spatial compressed 

sensing. These few locations were selected randomly from 

the target space. Afterwards, the linear interpolation is 

implemented to fit the data for the rest of the target space, 

resulting in full dictionary Φ∈ℝΡ×N with N observation 

signals for full target space each described by Ρ samples.   

 

3.2. Principal Component Analysis 

 

The signal observations in the resulting dictionary are highly 

coherent and have insufficient difference to be differentiable 

as shown in Fig. 3c for a random pair of observations. 

Therefore, PCA is employed, which analyzes the inter-

correlated data with N observations each described by 

several samples [9] as herein by Ρ. Its objective is to extract 

the most significant information from the data and to express 

this information as a set of new M orthogonal samples called 

principal components, which contain the maximum variance 

of the data [9]. Therefore, first of all columns of ΦT∈ℝN×Ρ 

were centered so that the mean of each column is equal to 

zero [9]. Afterwards, covariance matrix is computed and the 

eigenvectors and eigenvalues were found using singular 

value decomposition (SVD). Eigenvalue for corresponding 

eigenvector represents the amount of variance that the given 

eigenvector accounts for [9]. So, the eigenvectors are sorted 

in decreasing order of the eigenvalues giving eigenvectors in 

order of significance. The first M eigenvectors from B are 

selected which accounts for 90% of the variation.  

The dictionary is whitened firstly by making the rows of 

ΦT∈ℝN×Ρ uncorrelated by projecting the dataset onto the 

eigenvectors which results in dataset rotation. Secondly, the 

dataset is normalized to have a unit variance for all 

components by simply dividing each component by the 

square root of its eigenvalue. Collectively, all of the above 

transformations of the original Ρ samples to the M principal 

components are given by Eq. 2 as: 
 

UΦΤ=A      (2) 
 

Where T∈ℝM×M is the whitening transformation matrix and 

rows of matrix U∈ℝM×Ρ are first M eigenvectors. This results 

in final dictionary A∈ℝM×N, which will be used for imaging 

using CS based sparse recovery. Accordingly, signal 

observations in the resultant dictionary are now less coherent 

and have sufficient difference to be differentiable as shown 

in Fig. 3d for a same random pair of observations. 

 

4. IMAGING USING COMPRESSED SENSING 

 

Compressed sensing (CS) theory states that sparse signals 

and images can be reconstructed from far fewer samples 

than those by using traditional Shannon-Nyquist rates [10, 

11]. The important principles underlying CS are sparsity and 
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incoherence [10]. The target space to be reconstructed here 

is sparse and the incoherent dictionary A∈ℝM×N with M<<N 

has been formed by employing PCA, making the CS based 

sparse recovery applicable. 

The compressed sensing theory proves that for a given 

dictionary A∈ℝM×N, the CS based sparse recovery algorithm 

can reconstruct the K-sparse target space x∈ℝN×1, which 

maps the tumor distribution from a relatively smaller number 

of measurements M<<N as a vector y∈ℝM×1 by:  
 

ξ+Ax=y         (3) 
 

Where ξ∈ℝM×1 represents the amount of noise. Although the 

system is ill-posed and underdetermined but due to the prior 

information of signal sparsity, x∈ℝN×1 can be perfectly 

reconstructed with high probability via properly designed 

recovery algorithm. There are various CS based sparse 

recovery algorithms available in the literature which can be 

used. Among them the greedy search algorithm receives 

significant interest. The compressive sampling matching 

pursuit (CoSaMP) algorithm is implemented here for the 

imaging using CS [11] and compared with orthogonal 

matching pursuit (OMP) [12].  

 

5. ENHANCED IMAGING RESULTS  

 

The head imaging model is simulated for the detection of 

single tumor of complex shape and multiple tumors of 

different shapes and sizes to test and validate the proposed 

imaging system. The tumor under test is a combination of 

the 1 millimeter point targets. Therefore, the measurements 

vector y is a superposition of the observation signals for 

them as it is assumed here that the point targets at discrete 

spatial locations do not interact making superposition valid. 

The acquired measurements vector y is preprocessed to have 

an M number of samples. Enhanced imaging results for 

single tumor of complex shape (Fig. 6a) and for multiple 

tumors of different shapes and sizes at different locations 

(Fig. 6d) are reconstructed using the CoSaMP reconstruction 

algorithm (Fig. 6c and 6f) and are compared with those 

using the OMP reconstruction algorithm (Fig. 6b and 6e).  

 

   
            (a)                (b)                                     (c)                                 

   
            (d)                (e)                                     (f)                                 

Fig. 4. Target space (a) with single brain tumor of complex shape and (d) with multiple brain tumors of different shapes and 

sizes at different locations. The imaging results for target space (b) and (e) using OMP and (c) and (f) using CoSaMP.   

 

6. CONCLUSIONS 

 

A new noninvasive nearfield EMI system for highly 

coherent, compressively sensed (CS) dictionary at only few 

sensing positions is proposed and applied to the head 

imaging of brain tumors for testing. The simulation for the 

head imaging model is conducted with tumor anomaly and 

applicator antenna array in CST MWS. The incoherent 

dictionary is formed by implementing PCA in combination 

with spatial CS and background and other reflections 

subtraction. Thus, the resulting dictionary with sufficient 

difference and less spatial coherence for signal observations 

is tested for head imaging of brain tumor targets. The 

enhanced imaging results with high-resolution shows the 

validity of proposed imaging system of incoherent dictionary 

formation and later testing it by CS based sparse imaging. 
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