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ABSTRACT
There is a growing interest in quantifying tissue susceptibili-
ty in MRI. However, the zeros in the dipole kernel makes the
calculation of the magnetic susceptibility from the measured
field to be an ill-posed problem. Recently, Bayesian regu-
larization approaches have been utilized to enable accurate
quantitative susceptibility mapping(QSM), such as L2 nor-
m gradient minimization and TV. In this work, we propose
an efficient QSM method by using a sparsity promoting reg-
ularization which called L0 norm of gradient to reconstruct
susceptibility map. The use of L0 norm allows us to yield
high quality image and prevent penalizing salient edges. S-
ince the L0 minimization is an NP-hard problem, a special
alternating optimization strategy by introducing an auxiliary
variable is adopted to solve the problem and it only takes 1-2
mins to reconstruct the whole 3D susceptibility data. Both nu-
merical phantom simulations and human brain tests are per-
formed to demonstrate the superior performance of the pro-
posed method compared with previous methods.

Index Terms— quantitative susceptibility mapping, ill-
posed problem, L0 norm of gradient, alternating optimization

1. INTRODUCTION

Magnetic susceptibility is a physical property of material that
can be used as contrast mechanism in magnetic resonance
imaging(MRI)[1]. In the past decade, the magnetic suscep-
tibility plays an increasingly significant role in the medical
field. Different tissues have different magnetic susceptibili-
ty, such as calcium [2] and iron-laden tissue [3] and so on.
Nowadays, susceptibility has been used to diagnosis sickle
cell disease, aplastic anemia, thalassemia, hemochromatosis
and Parkinson’s disease.

Many relative techniques have focused on the magnetic
susceptibility. The relationship between the magnetic sus-
ceptibility and observed phase in k-space was revealed in
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[4]. However, the estimation of magnetic susceptibility from
phase is an ill-posed problem due to the presence of zero
value on a conical surface. In order to overcome this prob-
lem, a method called Thresholded K-space Division(TKD)
[5] was introduced. This method is straightforward imple-
ment, but it leads to inaccurate estimation in k-space regions
where the threshold is applied. A more accurate technique to
estimate the susceptibility is the COSMOS method [6]. The
method is simple, but requires repeating the data acquisition
at multiple orientations. Practically, it is difficult to rotate the
body to acquire data. Recently there are many reconstruc-
tion methods using single orientation. These methods require
prior knowledge to reconstruct susceptibility map. Since the
susceptibility distribution is approximated to be piece-wise
constant, the susceptibility map can be reconstructed by L2
gradient minimization or TV [7]. In addition, edge weights
derived from the magnitude image or phase image are often
employed to protect certain gradient [8, 9, 10, 11]. In [8],
the authors introduced a magnitude-weighted L2 norm penal-
ty on the spatial gradient of susceptibility map. In [9, 10],
magnitude-weighted TV was used to yield better suppres-
sion of streaking artifacts than the method in [8]. In [11],
Schweser et al. used edge information from phase and mag-
nitude rather than only magnitude. The strategy using edge
weighting may introduce erroneous contrast information due
to the incomplete consistencies among the magnitude gradi-
ent, phase gradient and the gradient of the true susceptibility
map.

In this paper, we use L0 term instead of L1 term to di-
rectly measure the gradient sparsity in the context of QSM.
Compared with L1 norm, L0 norm is the ideal sparse repre-
sentation and L1 norm is only the convex relaxation of L0
norm [12, 13]. The reconstruction time is also an important
issue in MRI applications. In our model, since the L0 mini-
mization is an NP-hard problem, it is hard to solve. Recently,
Xu et al. provided an algorithm for directly solving the gradi-
ent minimization problem in the context of image smoothing
[14]. Different to the 2D problem in [14], in our case, the sus-
ceptibility reconstruction problem takes place in 3D because
of the three dimensional relationship between susceptibility
and magnetic field. Here we solve the model by using alter-
nating minimization algorithm. The computation time is only
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1-2 minutes and comparable to the method in [15] where a
‘split Bregman’ method was used to fast QSM via TV. Nu-
merical phantom simulations are performed to demonstrate
the superior performance of the proposed method and human
brain results illustrate that the method is suitable in practice.

2. THEORY

2.1. Susceptibility and Field

In Fourier space, the relationship between the susceptibility
and the magnetic field can be represented as

Bk (k) = Xk (k) •
(
1

3
− k2z
k2

)
(1)

where Bk and Xk respectively represents the observed mag-
netic field and susceptibility distribution expressed in the
Fourier domain, • denotes point-wise multiplication, and
k2 = k2x + k2y + k2z , kx, ky and kz are coordinates in k-space.
Given the magnetic filed, the susceptibility can be calculated
with a direct inversion as following :

Xk (k) = Bk (k) •D−1 (k) (2)

where D (k) = 1
3 −

k2
z

k2 . The inversion from magnetic filed to
susceptibility is an ill-posed problem due to the conical sur-
face region defined by k2x+k

2
y = 2k2z ( magic angle is 54.7◦).

In Fig.1, we show the axial, coronal and sagittal view of the
dipole kernel in k-space. It is noticed that the susceptibility
value tend to infinity on the surface in k-space. The noise and
error detection arising from the local field in the region adja-
cent to the conical surface can be enhanced in the estimated
susceptibility map.

2.2. The L0 minimization

We propose to solve the inverse problem by imposing prior
knowledge on the reconstructed susceptibility map. Here L0
gradient is considered as a prior information. The L0 norm
of gradient indicates the numbers of nonzero gradient. For a
pixel of the three dimension MR signal Xp, it is considered
as the following expression:

‖GXp‖0 = # {p ||GxXp|+ |GyXp|+ |GzXp| 6= 0} (3)

where G is the image gradient operator and # {} is the
counting operator. The L0 norm of gradient returns 1 when
|GxXp| + |GyXp| + |GzXp| 6= 0. For a non-zero a,
‖aGXp‖0 = # {p ||aGxXp|+ |aGyXp|+ |aGzXp| 6= 0},
it is equal to ‖GXp‖0. This counting strategy is different
from traditional smoothing method, such as TV, the non-zero
a can affect the gradient magnitude. Due to this counting
strategy, salient edges are automatically protected via L0
minimization while total variation imposes large penalties on
salient gradients.

(a) (b) (c)

Fig. 1. The images of log
(∣∣D−1

∣∣) in the axial(a), coronal(b)
and sagittal(c) planes.

In the case of susceptibility reconstruction, we consider
the following optimization problem:

argmin
X

∥∥∥FHDFX −B∥∥∥2

2
+ λ‖GX‖0 (4)

where F is 3-D Fourier transform, D is a diagonal matrix
with entries 1

3 −
k2
z

k2 , B and X are the vectorized observed
magnetic field and susceptibility distribution. Here we intro-
duce auxiliary variable to relax the formula (4) and use alter-
nating minimization algorithm to solve it. It can be posed as
the unconstrained optimization problem:

argmin
X

∥∥∥FHDFX −B∥∥∥2

2
+ λ‖A‖0 + β ‖GX −A‖22 (5)

where A = [Ax;Ay;Az] is auxiliary variable correspond-
ing to GX and β is an parameter to control the similarity
between auxiliary variable and the corresponding componen-
t. First, fixing A, the susceptibility can be estimated through
minimizing∥∥∥FHDFX −B∥∥∥2

2
+ β ‖GX −A‖22 (6)

The susceptibilityX in k-space domain can be directly found
through diagonal matrix inversion and FFTs as

FX = [D2 + βE2]−1[DHFB + βEHFA] (7)

where E = [Ex;Ey;Ez] represents difference operator in
k-space domain [15] and Ex is a diagonal matrix with entries
Ex (i, i) = 1 − exp

(
−2π
√
−1kx (i, i) /Nx

)
, where Nx is

the matrix size along x axis. The operators Ey and Ez are
similarly defined.

After solving FX , the second subproblem is to solve A
by using the following representation:

argmin
A

λ‖A‖0 + β ‖GX −A‖22 (8)

(8) has a closed-form solution to yield A by

Ai =

{
0 (GxX)2 + (GyX)2 + (GzX)2 ≤ λ

β

GiX otherwise
(9)

where i = x, y, z and all operations are done component-
wisely. We repeat the two steps to achieve good result. The
algorithm can be formulated as Algorithm 1. The parameter
β starting from β0 is multiplied by rate κ in each iteration
so that convergence rate can be improved. The termination
criterion is the change of susceptibility values in the adjacent
iterations falls below 1%.
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Algorithm 1
Input: normalized field shift B, convolution kernel D, rate
κ, parameters λ, β0 .
Initialization: A← 0 , β ← β0 , i← 0.
repeat
With A(i) , solve for FX(i) in Eq.(7).
With FX(i) , solve for A(i+1) in Eq.(9).
β ← κβ ,i + +.
until 100×

∥∥FX(i)−FX(i−1)
∥∥2
2
/
∥∥FX(i)

∥∥2
2
≤ 1%.

Output: susceptibility map X .

2.3. The L0 minimization with a physical prior

In order to protect edges in susceptibility image that corre-
spond to edges in the magnitude image and overcome the lack
of measurable field data at the magic angle, a physical prior
was utilized to QSM [8, 9, 10, 11]. In our case, the minimiza-
tion problem turns to be the following representation:

argmin
X

∥∥∥FHDFX −B∥∥∥2

2
+ λ‖MGX‖0 (10)

where M is a binary matrix which is derived from the gra-
dient of the magnitude image. According to Liu et al. [10],
the largest 30% gradients of the magnitude image in ROI are
considered as edge in magnitude image.

3. MATERIALS AND RESULTS

To demonstrate the superiority of the proposed method, nu-
merical phantom with known susceptibility and human brain
data were utilized to perform the proposed method. Data pro-
cessing was carried out using a 64-bit windows system with
2.4 GHz Dual Core Intel Xeon processor and 32 GB of RAM
in Matlab (The Mathworks Inc, Massachusetts).

3.1. Numerical phantom simulation

A 3D numerical phantom experiment was carried out to e-
valuate the accuracy of our proposed method. The numerical
phantom consisted of a 240 × 240 × 154 image with resolu-
tion 1 × 1 × 1 mm3, and the susceptibilities were set to dif-
ferent values in three compartments (gray and white matter,
csf). The susceptibility values in these compartments were
defined as: Xwhite = −0.2 ppm, Xgray = 0.2 ppm and
Xcsf = −0.1 ppm. The susceptibility of background was set
to zero ( Fig.2(a)). The field map was calculated (Fig.2(b))
and zero mean Gaussian noise was added to obtain the noisy
field map ( Fig.2(c)). Finally the susceptibility image was re-
constructed and we used normalized root-mean-square error
(RMSE) as a metric to quantify the error in the ROI obtained
from different methods. The λ corresponding to the mini-
mization of the reconstruction error was considered optimal.

In Fig.2, the calculated susceptibility maps using TKD
(d), L2-reg (e), TV (f) and L0-reg (g) are shown in axial

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 2. Simulation validation of susceptibility maps with
TKD (d), L2-reg (e), TV (f) and the proposed method (g).
Ground truth susceptibility, field map and noisy field map are
shown in (a-c). The third row shows the corresponding abso-
lute error maps (h-k). The bottom raw shows the 1D results
from the 110-th row of the true data(a), TV result(f) and L0-
reg result(g) respectively.

plane. The RMSE over the three compartments was 21.0%,
13.0%, 3.2% and 1.3% for TKD, L2-reg, TV and L0-reg, re-
spectively. It can be seen that TKD method and L2-reg intro-
duce obvious streaking artifacts and noise. The L0 inversion
result shows a high degree of similarity with TV by visual
inspection. By close examination of the difference of two
approaches, we compare the absolute error maps ( Fig.2(j)
and Fig.2(k)) and present susceptibility values in the 110-
th row. It is obvious that the underestimation of structure
edges is existed in TV method while it does not happen in
L0 method. The mean value and stand variation in three com-
partments using these methods are shown in Table.1. The L0
minimization also provides more accurate susceptibility val-
ues than the other methods. In Fig.3, we show the Fourier
spectra of the susceptibility maps and the corresponding error
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Comparison of the proposed method with previous
methods in the Fourier domain. In the sagittal view, the Fouri-
er spectra corresponding to TKD (a), L2-reg (b), TV (c) and
the proposed method (d) are illustrated in the top row. The
bottom row shows the reconstruction error in the Fourier do-
main (e-h) respectively.

Table 1. Susceptibility measurement of three compart-
ments using different methods.

WM(ppm) GM(ppm) CSF(ppm)

Reference -0.200 0.200 -0.100
TKD -0.185±0.036 0.182±0.035 -0.091±0.036

L2-reg -0.196±0.023 0.195±0.023 -0.094±0.023
L1-reg -0.198±0.005 0.198±0.005 -0.096±0.007
L0-reg -0.199±0.001 0.200±0.002 -0.099±0.004

maps, respectively. It can be seen that the error has a slightly
higher energy level around the conical surface than in the sur-
rounding regions in k-space. The Fourier spectra of TKD and
L2-reg results revealed decreased Fourier coefficients in the
ill-conditioned regions (red arrows). Although TV perform-
s better than the above two methods, it also can not recover
the energy completely. This problem can be solved by the
proposed method, as can be seen in Fig.3(h).

3.2. Human brain experiments

Here we used original data from Cornell MRI Research Lab in
the relative website ( http://weill.cornell.edu/mri/pages/qsm.html
). The data were acquired on a 3.0T Siemens scanners with
8 echoes. The resolution was 0.9375 × 0.9375 × 2 mm3

with a matrix of 256 × 256 × 62. The shortest echo time
was 3.6 ms with a 5.9 ms increment for the other 7 echoes.
A region growing algorithm [16] was performed to unwrap
the wrapped phase. The background field was removed
by solving the Laplace equation with specified boundary
values(LBV)[17]. After the background magnetic field re-
moval, the susceptibility was calculated by solve formula (5)
and formula (10). Based on the L-curve heuristic [18], the

(a) (b) (c)

(d) (e) (f)

Fig. 4. Human brain QSM. Magnitude and local field are
shown in (a), (b), respectively. The results from TV method
(c), magnitude-weighted TV (d), L0-reg (e) and magnitude-
weighted L0-reg (f) are shown for comparisons. Red arrows
mark Vessel ROI.

regularization parameter λ corresponding to the corner of the
L-curve was considered as the optimal one.

Comparisons of different susceptibility reconstruction
methods from human brain in axial view are shown in Fig.4.
The filtered field map from LBV(Fig.4(b)) was free of arti-
facts and provided additional anatomical details complemen-
tary to the magnitude image(Fig.4(a)). Both TV(Fig.4(c)) and
L0 minimization (Fig.4(e)) can successfully generated QSM-
s. The iron-rich structures with high paramagnetic values are
clearly visible in susceptibility maps. The main difference is
the contrast of vessel which is indicated by red arrow. One of
the causes may be the edge-preserve nature of L0 minimiza-
tion in QSM. Since the magnitude and susceptibility maps
do not always share completely same structure, it is very
cautious to determine the number of zeros on the diagonal of
M . Inaccurate weighting matrix may blur the structure and
provide incorrect contrast, as shown in Fig.4(d) and Fig.4(f).

4. CONCLUSIONS

In this study, we propose a novel method for susceptibility
reconstruction. The proposed L0 minimization method takes
advantage of the ideal sparse representation of spatial varia-
tion in susceptibility maps. Numerical phantom experiments
and in-vivo experiments confirm that the proposed method
can accurately measure susceptibility and has better perfor-
mance than TV in terms of edge-preserving. The computation
of 3D susceptibility maps can be performed in a few minutes.
For further research, more accurate edge-weighting will be
explored to improve the quality of susceptibility image. We
hope this method can be used for clinical applications.
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