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ABSTRACT 

 
In this paper we investigate multiple instance learning 
(MIL), using generic tile-based spatio-temporal features, for 
the classification of benign and malignant lesions in breast 
cancer magnetic resonance imaging (MRI). In particular, we 
compare the performance of citation-kNN (CkNN) and 
conventional kNN against a traditional approach based on 
bespoke features extracted from a segmented region-of-
interest (ROI). Results demonstrate that tile-based CkNN 
has equivalent performance to ROI-based classification. 
However, the tile-based approach does not require any 
domain specific features typically used in breast MRI. This 
not only has the potential to make tile-based classification 
robust to inaccuracies in the delineation of suspicious 
lesions, but also makes it suitable for the detection of 
suspicious lesions prior to segmentation. 
 

Index Terms— Multiple Instance Learning, Breast 
MRI, Feature Extraction, Feature Selection.  
 

1. INTRODUCTION 
 

In this paper we evaluate the performance of multiple 
instance learning (MIL) [17] as a ‘pure’ machine learning 
approach for the classification of breast cancer. Specifically, 
we use T2-weighted magnetic resonance imaging (MRI) and 
dynamic contrast enhanced MRI (DCE-MRI). Here we 
utilize parametric models and a discrete cosine transform 
(DCT) [13] as feature extraction techniques. In particular, 
we compare generic tile-based features against region-of-
interest (ROI) based features. We also compare the results 
with those of [9] where we used MIL for the classification 
of non-contrast enhanced MRI based only on generic tile- 
based spatial features. 

The traditional approach to discriminate benign and 
malignant breast lesions involves ROI-based methods. Here, 
the dataset consists of bespoke (i.e. domain specific) 
features, extracted from each detected and then segmented 
lesion. In this way, each lesion becomes a labelled instance 
in the dataset. The feature vector extracted from each lesion 
is then individually labelled as either benign (negative) or 

malignant (positive). The features used in traditional single 
instance learning (SIL) approaches are based on the 
intensity, texture and morphology of the segmented lesion 
[15]. However, lesion margins and shape are strongly 
dependent on an accurate segmentation, which is a 
challenging task due to poor signal-to-noise-ratio and faint 
edges due to partial volume effects. Therefore, lesion 
delineation is affected by variation or uncertainties in the 
(semi)-automated lesion segmentation process. Clearly, 
these variations have the potential to lead to variations in 
diagnostic outcome. 

Multiple instance learning is a relatively new paradigm 
in supervised learning, which appears to be suitable for 
many computer aided diagnosis (CAD) related problems, 
particularly when there is uncertainty regarding the class 
label given to individual instances. MIL is a semi-
supervised approach where each labelled sample is 
represented as a set (or ‘bag’) of instances. The objective of 
MIL is then to classify the bag of instances rather than the 
individual instances. In the context of MIL in image 
analysis, a bag is a sub-image consisting of multiple 
instances, where those instances are either individual pixels, 
square tiles (tile-based MIL) or arbitrary regions of interest 
(ROI-based MIL) [10]. According to the standard 
(asymmetric) MIL assumption, a bag is labeled positive if at 
least one instance in the bag is positive, otherwise the bag is 
negative [17]. In the tile-based approach, the features are 
generic in nature rather than specific to breast cancer. Since 
these features are extracted from small tiles, not segmented 
ROIs, classification performance is not affected by the 
accuracy of the segmented regions. This makes tile-based 
MIL suitable for both diagnostic applications, which classify 
already detected lesions, and screening applications, which 
initially detect suspicious lesions. 

The purpose of this paper is not to solve breast cancer 
MRI classification problem, but to evaluate the efficacy of 
MIL as a ‘pure’ machine learning approach for the diagnosis 
of breast cancer. When we say ‘pure’ we mean that we use 
MIL as a generic approach without knowing much about 
physiology and domain specific features typically used in 
breast cancer MRI. Rather, we use MIL for classification of 
breast MRI in the same way as it is applied to solve an 
arbitrary image classification problem. In other words, we 
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utilize generic features based on their level of discrimination 
as opposed to (bespoke) application specific features 
selected on the basis of prior knowledge. 
 

2. EXPERIMENTAL METHODOLOGY 
 

2.1. Dataset 
 
Here we use ‘dataset A’ previously used in our work on the 
diagnosis of breast cancer MRI in [9]. This dataset consists 
of 53 malignant and 24 benign mass-like lesions. In [9] we 
considered a block of 60×60 pixels from T2-weighted 
(T2-w) MRI overlapping with a manually segmented ROI 
as a bag and features extracted from n×n tiles as 
instances. In this paper we extend this work to both T2-w 
MRI and DCE-MRI. The data were labelled and normalized 
as per [9]. 

The fat suppressed T1-weighted DCE-MRI images 
were acquired as five stacks using a 3-dimensional (3D) fast 
spoiled gradient-echo (FSPGR) sequence (Echo time = 
3.4ms, Repetition Time = 6.5ms and flip angle of 10°). The 
first stack corresponds to baseline pre-contrast images and 
the remaining stacks comprise of post-contrast images. Each 
stack was acquired in around 90 seconds with a 45 second 
delay between the pre-contrast and the first post-contrast 
stack. The second last stack was acquired in a sagittal 
orientation. All of the remaining stacks were acquired 
axially with a field of view of 32cm, a 360 × 360 acquisition 
matrix, and slice thickness of 1mm. The number of slices 
ranged from 116 to 182 with a median of 150. Here we use 
only four stacks which were acquired axially. 
 
2.2. Algorithms 
 
We evaluate the performance of a MIL based k-nearest 
neighbour (kNN) algorithm called citation-kNN (CkNN) 
[19]. We have chosen citation-kNN because it involves the 
optimization of only two parameters (reference neighbours 
‘k’ and citer’s rank ‘c’). Moreover, citation-kNN has been 
used for solving various MIL problems with high accuracy 
[10]. To compare the performance of citation-kNN in a SIL 
paradigm we also select kNN. kNN is a simple, effective 
and non-parametric technique which has been used 
extensively [8]. In addition, we compare the performance of 
CkNN with the results of a more conventional approach 
described in [6] and [7], because this study was performed 
on the same dataset. This study investigates the 
discriminatory power of state-of-the-art ROI-based features 
from multi-modal MRI using a Random Forest (RF) 
classifier. In particular, we compare the results with the 
relevant results of study 2 based on DCE-MRI alone and 
DCE-MRI combined with T2-w MRI.  

We use Multiple Instance Learning Toolbox1 [5], an 
add-on to PRTools toolbox written in Matlab ®, and 
PRTools toolbox 4.2.02.  
 
2.3. Features 
 
In [9] we proposed a generic tile-based MIL approach for 
the identification and classification of non-contrast 
enhanced breast cancer MRI. Here we extend this approach 
to DCE-MRI and include both spatial and temporal features. 
To extract spatio-temporal features, we decompose 64×64 
blocks of images into independent 8×8 tiles for T2-w MRI 
and 8×8×4 cubes for DCE-MRI. These tiles/cubes represent 
the instances in each 64×64 or 64×64×4 bag. To obtain this 
spatio-temporal information we evaluate two approaches: 1) 
using a 3D-DCT on DCE-MRI alone, which gives spatial 
information combined with temporal i.e. spatio-temporal. 2) 
using a 2D-DCT on T2-w MRI to obtain spatial features 
plus three parameters each from a linear slope model [16] 
and an empirical model of contrast enhancement [18] to 
obtain temporal features from DCE-MRI. To reduce 
computational complexity, we do not fit enhancement 
models voxel-wise, but rather to the relative enhancement 
based on the mean of each 8×8 tile from DCE-MRI stack. 
The equation for relative enhancement for DCE-MRI stack 
is given in [6]. 

We have chosen these above mentioned parametric 
models because they are generic in nature. These models are 
not derived from pharmacokinetics, i.e. these models do not 
make assumptions about the relation of concentration of 
contrast agent and intensity (two compartment flow). Also, 
the parameters of these models are independent of the 
density and nature of tissue type [18]. The initial parameter 
estimates for linear slope model and empirical model of 
contrast enhancement can be found in [3] and [11] 
respectively. 

While using the DCT as a feature extraction technique, 
we apply a 3D-DCT to each 8×8×4 cube of DCE-MRI and a 
2D-DCT to each 8×8 tile of T2-w MRI. We then perform a 
3D-zigzag traversal [4] to select 25 (10%) coefficients. By 
extracting coefficients in a zigzag manner, the correlation 
between coefficients is minimized [4] and we extract 
coefficients in increasing order of frequency [14]. For 
spatio-temporal features from DCE-MRI and T2-w MRI, we 
extract 25 features by combining the six temporal features 
extracted from DCE-MRI with the first 19 2D-DCT 
coefficients extracted in a zigzag transversal.  

For fair comparison with the results of [9], we select 5 
features only using the plus-l-take-away-r algorithm [12]. 
We select features in both MIL and SIL based distance 
metrics. Specifically we use minimum Hausdorff distance 
for MIL based feature selection and minimum Mahalanobis 
distance for SIL based feature selection. We select features 

                                                 
1 http://prlab.tudelft.nl/david-tax/mil.html 
2 http://prtools.org/software 
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on the training data and estimate performance on 
independent test data via a 10-fold cross validation (CV) [2] 
scheme. The performance measure utilized is mean area 
under receiver operating characteristics curve (AUC) 
because it estimates the probability of correct ranking [1]. 
Due to limited amount of data, we optimize the parameters 
of learners used in 3D-DCT by randomly selecting 
coefficients from the 2D-DCT on T2-w MRI. This results in 
an unbiased estimate of parameter values because 
parameters are tuned solely on T2-w MRI which is entirely 
independent from T1-w DCE-MRI. However, this will bias 
the estimated performance of the 2D-DCT plus temporal 
features based classification. 

 
3.  RESULTS 

 
Table 1 shows a comparison of classification performance 
of CkNN, kNN based on 3D-DCT spatio-temporal features 
and traditional ROI-based classification with RF using just 
DCE-MRI [6].  

Table 1: Performance of 3D-DCT tile-based features against 
traditional ROI-based features. 

Technique Learner Mean AUC 
Tile-based MIL CkNN 0.816 ± 0.047 
Tile-based SIL kNN 0.838 ± 0.010 

ROI-based SIL [6] RF 0.824 ± 0.046 
 

Fig. 1 presents the performance of CkNN and kNN with 
MIL based feature selection in comparison to SIL based 
feature selection for 3D-DCT features. It can be seen that 
MIL based feature selection is important for MIL based 
classification (with CkNN). Similarly, SIL based feature 
selection is important for SIL based classification. 

 
Fig. 1: Performance of learners with MIL based feature selection in 

comparison to SIL based feature selection for 3D-DCT features. 

 
Table 2 compares the classification performance of 

CkNN, kNN based on 2D-DCT plus temporal features 

against traditional ROI-based classification using both DCE-
MRI and T2-w MRI with RF [6].  

Table 2: Performance of 2D-DCT plus temporal features against 
traditional ROI-based features. 

Technique Learner Mean AUC 
Tile-based MIL  CkNN 0.778 ± 0.052 
Tile-based SIL kNN 0.702 ± 0.012 

ROI-based SIL [6] RF 0.838 ± 0.045 
 

Fig. 2 shows the classification performance of CkNN 
and kNN with MIL based feature selection in comparison to 
SIL based feature selection for 2D-DCT plus temporal 
features. Fig.2 shows that the MIL based learner (CkNN) 
performs best with the MIL based feature selection. 
However, here SIL based classification (with kNN) also 
gives better performance with MIL based feature selection 
as compared to SIL based feature selection. 

 

 
Fig. 2: MIL based feature selection in comparison to SIL based 

feature selection for 2D-DCT plus temporal features.  
 

4. DISCUSSION 
 

In Table 1 and 2, we have presented the classification of 
benign and malignant lesions using generic tile-based 
spatio-temporal features and ROI-based features. A t-test 
indicates that the performance of CkNN is equivalent to the 
performance of kNN. Also, generic tile-based classification 
using CkNN is equivalent to traditional ROI-based 
classification. Thus, tile based classification using MIL is a 
viable option for the classification of benign and malignant 
breast lesions with additional advantages mentioned in [9]. 
This indicates that generic tile-based features allow us to use 
MIL as a ‘pure’ machine learning method to solve the breast 
MRI classification problem with equivalent performance to 
the traditional ROI-based classification.  

Based on these results, we can say that MIL is a 
suitable choice for CAD systems. However, a ‘pure’ 
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machine learning approach has the disadvantage that it 
produces an unintelligible ‘black-box’ model to the 
clinicians. That is, the learning process and generic features 
are not easily interpretable by the clinicians. However, while 
traditional ROI-based features may be interpretable by 
clinicians (as they relate to physiological properties of the 
lesion), the learning process (i.e. RF) still results in a black-
box model.  

Fig.3 shows a comparison of the spatio-temporal 
features from Tables 1 and 2 against the spatial features 
from [9]. Fig.3 confirms that classification performance is 
improved with tile-based spatio-temporal features compared 
to spatial features alone. 

 

 
Fig. 3: Performance of spatio-temporal features in comparison to 

spatial features [9]. 
 

Next, we analyse the classification performance of the 
learners from Table 1 in comparison to Table 2. A t-test 
indicates that the performance of CkNN with 3D-DCT 
spatio-temporal features is equivalent to that with 2D-DCT 
plus temporal features. However, kNN performs 
significantly better with 3D-DCT features as compared to 
2D-DCT plus temporal features. We know that, Table 1 
presents an unbised estimate of the performance with 3D-
DCT features, while the performance of CkNN and kNN is 
biased in Table 2 due to parameter optimization on the same 
dataset. Therefore, the 3D-DCT spatio-temporal features 
would appear better than 2D-DCT plus temporal features. 
Moreover with 2D-DCT plus temporal features, we extract 
temporal information using parametric enhancement 
models. Although these models are generic, they are domain 
specific to some extent. Thus we can say that 3D-DCT 
spatio-temporal features are more ‘pure’ (generic) than 2D-
DCT plus temporal features.  

From Fig.1 and 2 we can see that CkNN performs better 
with MIL based feature selection as compared to SIL based 
feature selection. This demonstrates importance of MIL 
based criterion for dimensionality reduction in MIL based 

classification. Similarly, the SIL based criterion is important 
for SIL based classification. 

After doing feature selection, we assess the relative 
importance of low and high frequency coefficients selected 
from the DCT. We first arrange DCT coefficients into 
frequency groups based on the similar sum of their indices in 
the same way as is done in [14]. In this way we get five 
groups for 25 3D-DCT coefficients and six frequency groups 
for 19 2D-DCT coefficients. Next, we divide DCT frequency 
groups equally into low and high frequency. We also 
evaluate the relative importance of horizontal, vertical and 
diagonal coefficients by counting the number of occurrence 
of each selected coefficient with respect to its position. In 
MIL based feature selection, all selected features belong to 
low frequency group. Moreover, we get equivalent counts of 
horizontal, vertical and diagonal coefficients. A similar trend 
was identified for the SIL based feature selection. This 
demonstrates an approximately equal importance of 
horizontal, vertical and diagonal low frequency DCT features 
for classification of mass-like lesions. This statement is in 
accordance with [9], where we analyzed the relative 
importance of horizontal and vertical generic tile-based 
spatial features for the mass-like lesions. For the 2D-DCT 
plus temporal features, the MIL based feature selection 
returns only the DC coefficient from the 2D-DCT and four 
temporal model features. While, with SIL based feature 
selection, we get all low frequency DCT features and no 
model features. The high occurrence of model features in 
MIL based feature selection confirms the importance of 
temporal information from DCE-MRI for classification of 
benign and malignant lesions. 

 
5. CONCLUSIONS 

 
In this paper we have evaluated the efficacy of MIL as a 
‘pure’ machine learning technique for the descrimination of 
benign and malignant lesions in breast MRI. Experimental 
results indicate that performance of CkNN based on tile-
based spatio-temporal features is statistically equivalent to 
the ROI-based classification. However, the tile-based 
approach does not require any domain specific features and 
is robust to inaccuracies in the segmentation of suspicious 
lesions. Therefore, CkNN may be a suitable choice for the 
classification of benign and malignant lesions. Also, spatio-
temporal features have improved descrimination compared 
to spatial features alone. Moreover, 3D-DCT spatio-
temporal features are better than 2D-DCT plus temporal 
features. Further, we highlight that MIL based feature 
selection is important for MIL based classification. 
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