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ABSTRACT

High spatial resolution in functional magnetic resonance imaging
improves its sensitivity to brain activation signals by reducing par-
tial volume effects. However, the long acquisition times required for
high spatial resolution limit the temporal resolution in fMRI stud-
ies. Consequently, the low temporal sampling bandwidth leads to
increase in physiological noise and poor modeling of the functional
activation dynamics. Thus, fast techniques capable of recovering
fMRI time-series from under-sampled data are desirable to improve
the sensitivity and specificity of fMRI for functional brain mapping.
This paper presents an under-sampled fMRI recovery using low-rank
plus sparse matrix decomposition signal model. This model is suited
for blocked or slow event-related fMRI studies, where the low-rank
matrix captures the temporally static T ∗2 -weighted image patterns
and, the sparse matrix captures the pseudo-periodic brain activation
signal. The preliminary results of under-sampled recovery on in-vivo
fMRI data show recovery of BOLD activation in human superior col-
liculus with contrast-to-noise ratio ≥ 4.4 (85% of reference) up to
acceleration factors of 3.

Index Terms— Magnetic resonance imaging, Compressed
sensing, functional MRI, Low-rank methods, Sparse recovery

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) using blood oxygen
level-dependent (BOLD) contrast is used for advancing fundamen-
tal understanding of the brain by measuring the hemodynamic corre-
lates of neuronal activity [1, 2, 3, 4]. High spatial resolution fMRI is
desirable as it provides greater localization of activation in the brain
enabling identification of small functional-sub units, such as supe-
rior colliculs [3] and pulvinar nucleus of thalamus [4]. However,
small voxel sizes concomitantly require long readout durations that
are adversely affected by signal decay and off-resonance effects. As
an alternative, segmented data acquisition schemes (multi-shot) are
used with shorter readouts per segment (shot). However, segmented
acquisitions are prone to subject-motion and respiration induced off-
resonance effects. More importantly, both single- and multi-shot ac-
quisitions limit the temporal resolution of the high spatial resolution
fMRI studies. Low temporal sampling bandwidths result in alias-
ing of physiological noise which reduces the sensitivity of fMRI to
BOLD signal [2, 5]. There is, therefore, a need for fMRI techniques
that provide rapid single-shot imaging with short readout durations
to reduce off-resonance artifacts while maintaining high spatial and
temporal resolutions. This paper presents an fMRI technique based
on modeling the spatio-temporal fMRI signal as a low-rank plus
sparse matrix decomposition that allows for fMRI signal recovery
from its under-sampled data.

In the past decade, many techniques based on the theory of com-
pressed sensing (CS) have been proposed for accelerating various
dynamic MRI applications, such as myocardial perfusion imaging
[6, 7] and MR angiography [8, 9]. However, application of CS
to fMRI has been limited and only few studies have been reported
[10, 11, 12]. In [10], authors use the sparsity of images in wavelet
transform domain in combination with variable density spiral acqui-
sitions to achieve acceleration factors of 1.4. Exploiting the com-
pressibility of images in the spatial domain only and ignoring the
temporal redundancy in the fMRI signal results in low acceleration
gains. In [12], multi-shot echo planar imaging (EPI) based under-
sampling is combined with low-rank matrix completion to accelerate
resting state fMRI studies. Similar to a sparse signal, which only has
a few significant representation coefficients, a low-rank matrix only
has few large singular values. The low-rank of a matrix signifies
a low degree of freedom and is used to recover the matrix from its
under-sampled version. In [12], each temporal frame is considered
a column of a space-time matrix, where the spatio-temporal correla-
tions produce a low-rank matrix [13, 14]. Using matrix completion,
resting state fMRI studies were accelerated up to factors of 4.27 in
[12]. However, for task based fMRI studies the assumption of low-
rank matrix is too strong to capture the weak BOLD activation sig-
nals in addition to the relatively slow-evolving non-activation related
functional brain networks.

This paper presents a fast fMRI technique based on recovery of
2d-time images from under-sampled data using the low-rank plus
sparse matrix decomposition model. The combination of low-rank
model (LR) and the sparsity of signal representations (S) has been
successfully applied to computer vision, where it enables separation
of background from the foreground in a video sequence [15]. The
(LR+S) decomposition is ideal for fMRI signals evoked by slowly
varying experiments using blocked or slow event-related designs,
where LR can model the temporally correlated background, and S
can model the dynamic BOLD activity. In such experiments, the
neural activation is limited to relatively small portion of the imaged
volume. The time series of the activated voxels is pseudo-periodic as
it is a convolution of a stereotypical hemodynamic response function
with a periodic stimulus presentation (to invoke neural metabolism).
Additionally, the non-activated volume voxels show non-task related
activity which changes slowly over time. Thus, in the (LR+S) de-
composition of fMRI signal, the LR can model the non-task re-
lated temporally correlated signal and the S can model the pseudo-
periodic BOLD activity.In the proposed fMRI signal decomposition:
1) redundancy in both space and time are exploited unlike [10] and,
2) the additional S modeling of the BOLD activity improves its sen-
sitivity over that of [12]. In this paper a preliminary evaluation of
fMRI recovery using the (LR+S) model is done using phantom sim-
ulation and retrospective under-sampling of in-vivo fMRI data. The
preliminary results show good signal recovery of superior colliculus
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activation (conrast-to-noise ratio ≥ 4.4, 85% of reference signal)
up to acceleration factors of R= 3.

The rest of this paper is organized as follows. Section 2 presents
the low-rank plus sparse decomposition model for the fMRI signal.
Section 3 presents the simulation and retrospective under-sampling
experiments for fMRI data recovery. Finally, section 4 concludes the
paper citing future direction.

2. METHOD

This section presents the mathematical formulation of the proposed
fast fMRI technique. Section 2.1 details the low-rank plus sparse
matrix (LR+S) decomposition for the fMRI signal. In section 2.2,
the under-sampled fMRI recovery formulation based on the (LR+S)
model is detailed.

2.1. Low-Rank Plus Sparse Matrix Decomposition

The time series of images in a fMRI data set is converted to a ma-
trix M in which each column is a temporal frame. The low-rank
plus sparse matrix approach aims to decompose the matrix M as a
superposition of a low-rank matrix L (few non-zero singular values)
and a sparse matrix S (few non-zero entries). The decomposition is
unique and the problem is well posed if the low-rank component is
not sparse, and vice versa if the sparse component does not have low
rank [15, 16]. This condition is referred to as incoherence between
L and S. For example, these conditions are guaranteed if the singu-
lar vectors of L are not sparse and if the non-vanishing entries of S
occur at random locations [16]. Low-rank matrix completion from
under-sampled data is performed by minimizing the nuclear norm of
the matrix (sum of singular values), which is the analog of the l1-
norm for signal vectors (sum of absolute values) [17]. Therefore, the
L + S decomposition is performed by solving the following convex
optimization problem:

min ‖ L ‖∗ +λ ‖ S ‖1 s.t. M = L + S (1)

where, ‖ L ‖∗ is the nuclear norm of the matrix L, ‖ S ‖1 is the l1-
norm of S, and λ is a tuning parameter that balances the contribution
of the l1-norm term relative to the nuclear norm term.

2.2. Under-Sampled fMRI Recovery

The L+S decomposition given in eqn. (1) is modified to reconstruct
under-sampled fMRI as follows:

min ‖ L ‖∗ +λ ‖ TS ‖1 s.t. E (L + S) = d (2)

where, T is a sparsifying transform for S, E is the encoding or ac-
quisition operator, and d is the under-sampled data. L and S like M
are defined as space-time matrices, where each column is a tempo-
ral frame; and d is a column vector. Note that E is a linear operator
that maps the underlying fMRI time-series data to the under-sampled
data vector d.

A version of eqn. 2 using regularization instead of strict con-
straints is formulated as follows:

min
L,S

1

2
‖ E(L + S)− d‖22 + µ ‖ L ‖∗ +λ ‖ TS ‖1 (3)

where, the parameters trade µ and λ trade-off data consistency with
complexity of the solution given by the sum of the nuclear- and l1-
norm. In [18], the optimization problem in eqn. 3 is solved us-
ing iterative soft thresholding of the singular values of L and of the

entries of TS. Soft thresholding or shrinkage operator is defined
as Λλ(x) = x

|x| max(|x| − λ, 0), in which x is a complex num-
ber and the threshold λ is real valued. This is extended to matrices
by applying the shrinkage operation to each entry. Next, we define
the singular value thresholding (SVT) by SV Tλ = UΛλ(Σ)V H ,
where M = UΣV H is any singular value decomposition of M.
In the proposed L + S reconstruction algorithm, in the k-th itera-
tion the SVT operator is applied to Mk−1 − Sk−1, then the shrink-
age operator is applied to Mk−1 − Lk−1 and the new Mk is ob-
tained by enforcing data consistency, where the aliasing artifacts
corresponding to the residual in k-space E∗(E(Lk + Sk − d) are
subtracted from Lk + Sk. Here E∗ refers to the adjoint operator
of E, which maps a vector to a matrix. The algorithm iterates un-
til the relative change in the solution is less than 10−5, i.e., until
‖ (Lk + Sk) − (Lk−1 + Sk−1) ‖2≤ 10−5 ‖ Lk−1 + Sk−1 ‖2.
This algorithm represents a combination of singular value threshold-
ing used for matrix completion [17] and iterative soft thresholding
used for sparse reconstruction.

3. EXPERIMENTS AND RESULTS

3.1. Phantom Simulations

This section presents under-sampled fMRI recovery using the
(LR+S) signal decomposition on Shepp-Logan phantom based sim-
ulated data. Fig. 1a shows the Shepp-Logan phantom which is used
to simulate a 2d-time fMRI BOLD activation data. Based on the
assumption that in task-based fMRI studies the functional activation
is spatially restricted, modulation of time-series data is restricted to
two ellipses shown with colored outlines in fig. 1a. Time-series for
the two activation ellipses are obtained by convolving the commonly
used double Gamma hemodynamic response function (HRF) with a
blocked stimulus presentation time-curve [2]. A blocked stimulation
period of 24 time-points is used with a 50% duty cycle. The sim-
ulated fMRI data matrix has a size of 512x512x96 for 4 functional
activation cycles. For realistic simulations of fMRI data, electrical
noise is added in the spatial Fourier space using a zero-mean Normal
distribution to each sample at a signal-to-noise ratio of 20. In addi-
tion, to simulate weak activations, maximum amplitude modulation
is restricted to 2% of the gray-scale intensity of the selected ellipses.
The fMRI data is Fourier transformed and under-sampled using the
variable density 2DFT technique [11]. The under-sampled data is
then used to recover the complete fMRI time-series data based on
the formulation of eqn. 3 using the algorithm summarized in sec.
2.2. Temporal Fourier transform is used as the sparsifying transform
T in eqn. 3. The parameters µ = 0.01 and λ = 0.01 are selected
by trial-and-error for best signal recovery.

Figure 1 shows the results of under-sampled fMRI recovery on
the simulated data at an acceleration of R = 4. Figure 1b shows
a y-t plane (marked by the yellow-dashed line in fig. 1a) from the
data. The y-t plane corresponds to the noisy ground truth (M) and
shows the temporal modulations within the activation ellipses. Fig-
ures 1c and 1d show the same y-t plane from the low-rank model L
and the sparse matrix S recovered from the under-sampled data, re-
spectively. The L time-series data within the activated-ellipses show
negligible variations similar to those of the non-activated regions.
In contrast, the S time-series captures the strong pseudo-periodic
activation signal. Figure 1f shows a voxel time-series from the red-
boundary-ellipse of fig. 1a. This plot shows the temporal-variations
and the amplitude differences between the L and the S signals with
respect to the noisy ground truth. As stated earlier, the L shows
negligible temporal variations and the S aligns well with the BOLD
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 1: Results of under-sampled recovery on a Shepp-Logan based simulated fMRI data-set at an acceleration of R = 4. (a) A Shepp-Logan
time frame; (b) Simulated noisy y-t plane corresponding to the yellow line in (a); Recovered y-t plane from: (c) low-rank matrix L, (d) sparse
matrix S; (e) Correlation map of sparse (S) component of time-series with noise-free BOLD activation signal; Time-series of a voxel: (f), (g)
& (h) belonging to red-outlined ellipse in (a), (i) a non-activated voxel.

activation signal. A zoomed-region (marked by cyan colored bound-
ary) from fig. 1f containing 2 activation cycles is shown in figs. 1g
and 1h. In fig. 1g, the recovered time-series (L + S, red-solid) fol-
lows the noisy ground truth data (blue-dashed) closely with a corre-
lation of 0.96. Similarly, in fig. 1h, the recovered sparse component
(S, red-solid) follows the noise-free activation data (blue-dashed)
closely with a correlation 0.95. In fig. 1h, the time-series curves are
mean-shifted to zero to remove the dc offset between the two curves.
Figure 1e shows the correlation of the sparse component S with the
noise-free BOLD activation signal. The correlation coefficients for
non-image regions are fixed to 1 for easier visualization. Clearly, the
S shows high correlation only with the two activation ellipses: red:
0.93± 0.02 and green: 0.97± 0.02. Figure 1i shows the time-series
curves for a non-activated voxel, for which the S time-series curve
has very low amplitude and shows no inherent periodicity.

3.2. In-vivo fMRI Data

This section details the under-sampled fMRI recovery experiments
on in-vivo data acquired on healthy volunteers. Imaging were per-
formed on a Siemens 3T scanner using Archimedean spiral trajecto-
ries [19]. Acquisition parameters are selected to acquire a field-of-
view of 192-mm at high spatial resolution of 1.2-mm using a 3-shot
acquisition with a TR= 1 sec/shot, i.e., one functional volume is
acquired every 3 sec. The imaging planes are oriented to cover the
superior colliculus (SC), a small laminar structure situated on the
rostral surface of the brainstem. The SC is functionally associated
with visual attention and occulomotor responses [20]. To invoke the
functional response in SC, subjects perform a lateralized stimula-
tion and attention task based on a speed discrimination of moving

dots during image acquisition [20]. To evaluate the performance of
an under-sampled fMRI recovery technique its sensitivity to BOLD
activation will be quantified and compared with that of a standard
fMRI acquisition. The BOLD sensitivity is measured in terms of
functional-contrast-to-noise (fCNR) ratio. To extract fCNR within
a region-of-interest (ROI) in a fMRI time-series, a sinusoid at the
stimulus presentation frequency is fit to the normalized time series
at each voxel, and from this fit, volume maps of response ampli-
tude, coherence, and phase are derived. The amplitude quantifies the
BOLD activation, while the phase measures the time-lag between
stimulus onset and the hemodynamic response. The coherence value
is equivalent to the correlation coefficient of the time-series data with
its best-fit sinusoid. The mean amplitude within the ROI is used as
the functional contrast. To measure the noise, bootstrapping was
used to estimate confidence intervals on the functional contrast ob-
tained in each session. Experiments runs within session were resam-
pled with replacement, and the resampled set was then averaged and
analyzed to obtain the functional contrast. This process was repeated
104 times to generate a statistical distribution of the contrast. The
68% confidence intervals were calculated from this distribution, and
our noise level was defined as half the difference between the upper
and lower interval. For a normal noise distribution, this calculation
would precisely correspond to the standard-error-of-the-mean.

The in-vivo data is under-sampled by reducing the number
of spiral shots used for reconstruction and also shifting from
Archimedean to variable-density spiral trajectories [21]. How-
ever, the variable-density parameters ( r, α in eq. (1) in [21]) are
selected to keep the #sample/shot identical to that used for acquiring
the fMRI data. Thus, for the 3-shot spiral acquisition, acceleration
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(a) (b)

(c) (d)

Fig. 2: Results of under-sampled fMRI recovery on in-vivo data at an
acceleration of R= 3. (a) A sample recovered fMRI image; Time-
series: (b) of a non-activated voxel (red in (a)), (c) of an activated
voxel in visual cortex (green in (a)); (d) Sparse component with a
sinusoid at the stimulus frequency with correlation = 0.84.

factors of R= 1.67 and R= 3 are possible. For under-sampled
recovery using eqn. 3, the encoding operator E and its adjoint (E∗)
are derived using the NUFFT toolbox [22]. Figure 2 shows results
for under-sampled recovery at acceleration of R= 3 with µ = 0.005
and λ = 0.001 selected empirically to yield the best recovery per-
formance. Figure 2a shows a recovered fMRI image in which two
different voxels are marked. The red voxel is in non-activated brain
region and its time-series are shown in fig. 2b. The green voxel lies
in the visual cortex and its time series are shown in fig. 2c. Similar to
phantom results, the sparse component captures the pseudo-periodic
BOLD activity and the low-rank matrix component captures the
temporally correlated data. Fig. 2d shows the S component for
green voxel which shows high coherence (0.84) with a sinusoid at
the stimulus frequency (also shown).

Table 1: FCNR in superior colliculus for under-sampled fMRI re-
covered time-series data at various accelerations (R).

Recovery Method R= 1.67 R= 3
Wavelet sparsity [10] 3.7± 0.7 2.8± 0.6
Low-rank model [12] 4.6± 0.5 4.2± 0.4

Proposed (LR+S) model 4.9± 0.4 4.4± 0.5

Figure 3 shows the results of BOLD activation analysis in the su-
perior colliculus (SC) for the under-sampled recovery at R= 3 and
compares with that of the reference data (no under-sampling). Fig-

(a) Reference (b) Undersampled R= 3

(c) Reference (d) Undersampled R= 3

Fig. 3: Comparison of BOLD activation analysis on superior col-
liculus for an under-sampled recovery at acceleration of R = 3.
Top-row: Coherence maps, Bottom-row:Phase maps

ures 3a and 3b show the coherence values for BOLD activation for
the reference (0.50±0.06) and the under-sampled data (0.46±0.07),
respectively. The coherence values are overlaid on a 3D segmen-
tation of the brainstem and the outlines delineate the left- (green)
and right-SC (yellow) ROIs. These ROIs are used to calculate the
fCNR (later reported) which is used for quantitative evaluation of
the BOLD sensitivity of the fMRI recovery technique. In figs. 3a
and 3b, the coherence maps are threshold-ed below at 0.39, i.e., all
transparent regions have coherence values smaller than 0.39. The
under-sampled data shows slightly weaker activations which can be
attributed to smoothing of data due to the constraint of sparsity in
the temporal Fourier domain. Figures 3c and 3d compare the phase
distributions of the activation signals in the reference and under-
sampled data, respectively. Minor differences in phase distributions
are observed for the left SC and changes are negligible in the right
SC. For statistically relevant quantification of the proposed fast fMRI
technique, retrospective under-sampling experiments are repeated on
3 healthy volunteers for the SC activation task. Table 1 summarizes
the (mean ± std.) fCNR in SC ROIs for the proposed technique
and the approaches of [10] and [12]. Functional CNR for refer-
ence fMRI data for 3 subjects is 5.2 ± 0.6. From table 1 for all
techniques, with increasing acceleration the fCNR decreases, how-
ever, the decrease is minimum for the proposed (LR+S) model. The
proposed fMRI technique: 1) does significantly better than the ap-
proach of [10] which does not model the temporal redundancies in
the fMRI signal and, 2) marginally outperforms than the approach
of [12] as the sparse S component is more appropriate for modeling
the BOLD activity. In addition, for the proposed technique and [12],
prospective under-sampling should further improve BOLD sensitiv-
ity by reducing physiological noise due to a real increase in temporal
sampling bandwidth as opposed to in retrospective under-sampling
experiments.

4. CONCLUSIONS

This paper presents an under-sampled fMRI recovery technique us-
ing the low-rank plus sparse matrix decomposition model. In task
based fMRI, the low-rank matrix models the temporally correlated
resting-state signal and the sparse component models the pesudo-
periodic BOLD activity. The preliminary results on in-vivo fMRI
data show recovery of activation signals with contrast-to-noise ratio
≥ 4.4 (85% of reference signal) up to accelerations R= 3.
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