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ABSTRACT

This paper presents new class of time-frequency (T-F) fea-
tures for automatic detection and classification of epileptic
seizure activities in EEG signals. Most previous methods
were based only on signal features derived from the instan-
taneous frequency and energies of EEG signals in different
spectral sub-bands. The proposed features based on image
descriptors are extracted from the T-F representation of EEG
signals and are considered and processed as an image us-
ing T-F image processing techniques. The proposed features
include shape and texture-based descriptors and are able to
describe visually the normal and seizure activity patterns
observed in T-F images. The results obtained on real EEG
data show that T-F image descriptor-based features achieve
an overall classification accuracy of up to 98% for 100 EEG
segments using one-against-one SVM classifier. The results
suggest that the proposed method outperforms those methods,
which employ signal features only or combined signal-image
features by about 3% for 100 EEG signals.

Index Terms— Time-frequency image, time-frequency
feature extraction, Electroencephalogram (EEG), epileptic
seizure detection, EEG classification.

1. INTRODUCTION: CONTEXT, PROBLEMATIC
AND RELATED WORK

Electroencephalogram (EEG) signal which contains informa-
tion about the brain’s electrical activity, has become the most
used signal for detecting epileptic seizures due to abnormal
excessive or synchronous neuronal activity in the brain [1].
A manual detection of seizures is achieved by visually scan-
ning EEG recordings and is high computationally intensity
task especially with long recordings [2]. Skilled medical in-
terpreters are required to interpret the observed seizure activ-
ities and to determine the appropriate diagnostics (i.e. neuro-
physiologist). It is therefore desired to develop an automated
system -which can help the neurophysiologists- for detecting
and classifying EEG seizure activities. A typical scheme for
EEG seizure detection and classification system includes the

following steps: (1) analyze EEG signal in either time, fre-
quency, time-scale or joint T-F domain, (2) extract and select
the relevant features which characterize the seizure activity
patterns and (3) classify the extracted features to assign EEG
signal to its corresponding class (i.e. seizure, non-seizure or
normal) [3]. Various methods based on the above mentioned
schemes have been proposed in the literature. These methods
extract EEG features in the time domain [4, 5, 6, 7], frequency
domain [5, 6, 8], or T-F domain [3, 9, 10], as well as time-
scale domain [11, 12]. The relevant proposed features ex-
tracted from EEG signals in the time domain are based on am-
plitude information (e.g. average EEG amplitude, derivatives
of the EEG signal’s amplitude, zero-crossing rate, coefficient
of variation, average EEG duration) and entropy information
(e.g. Shannon entropy, Fisher information, approximate en-
tropy) [4, 5, 6, 7]. In the frequency domain, the proposed
features are extracted from the spectrum of EEG signal where
the most relevant ones are based on power spectrum such as
mean frequency, average power in the main energy zone, nor-
malized spectral entropy, normalized power, frequency sub-
band powers, and intensity weighted bandwidth [5, 6, 8]. In
the time-scale domain, the features are extracted from a multi-
scale representation (e.g. wavelets and X-lets) of EEG signal
and include the statistical moments of details coefficients of
EEG signal and their relative energies [11, 12]. In the T-F do-
main, the features are extracted from the T-F representation of
EEG signal and are capable to characterize the non-stationary
nature and multi-component characteristics of EEG signals
such as the Instantaneous Frequency (IF) and sub-band ener-
gies [3, 9, 10]. Recently, a novel class of T-F features was pro-
posed in [13], and is based on the translation and calibration
of the relevant time-domain and frequency-domain features.

In this work, we propose new image descriptor-based fea-
tures to describe visually the normal and seizure activity pat-
terns in the T-F domain. The proposed features are extracted
from the T-F representation of EEG signals and processed
as an image, by applying T-F image processing techniques.
These features are used to define a new feature vector which
can be used to characterize and hence classify EEG epileptic
seizure activities.
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2. T-F APPROACH FOR EEG EPILEPTIC SEIZURE
DETECTION AND CLASSIFICATION

In order to develop EEG seizure detection methods in the T-F
domain, it is necessary to select a suitable T-F distribution
(TFD [14]) to represent EEG signals. The most common are
quadratic TFDs (QTFDs) such as Wigner-Ville distribution
(WVD), Smoothed WVD (SWVD), Spectrogram (SPEC),
Choi-Williams distribution (CWD), B distribution (BD) and
Modified-B distribution (MBD) [14, 15].

2.1. Quadratic time-frequency distribution

The general formula for QTFD of a given analytic signal
z[n] associated with the real discrete time signal x[n], n =
0, 1, . . . , N − 1 is given by [15]:

ρ[n, k] = 2 DFT
n→k

{
G[n,m] ∗

n
(z[n+m]z∗[n−m])

}
(1)

where DFT is the Discrete Fourier Transform, G(t, τ) is the
time-lag kernel of the TFD and ∗

n
stands for convolution in

time. For an N -point signal x[n], ρ[n, k] is represented by
an N × M matrix ρ with n = t.fs and k = 2M

fs
f where

t and f are the continuous time and frequency variables, re-
spectively; and fs is the sampling frequency rate of the signal.
M is the number of FFT points used in calculating the TFD
(M > N ) . Table 1 gives examples of most popular QTFDs
with their corresponding time-lag kernel G. All these QTFDs
can be considered as filtered versions of the WVD and differ-
ent kernels in (1) allow to define different distributions in the
class, that are most specifically adapted to particular classes
of signals.

QTFD G[n,m]

WVD δ[n]
SWVD δ[n]w[m]

CWD
√
πσ

2|m| exp(
−π2σn2

4m2 )**[sincn sincm]

BD
(
|2m|

cosh2 n

)β
*sincm

MBD cosh−2β n∑
n cosh−2β n

SPEC w[n+m]w[n−m]

Table 1. Time-lag kernels of the most popular QTFDs. The
parameters β and σ are positive reals and w represents the
window function.

2.2. T-F signal analysis for EEG seizure detection

As EEG signals are non-stationary, they are best represented
by a TFD, which is intended to describe how the energy of the
signal is distributed over the 2-dimensional T-F space [15].
The TFD shows the start and stop times of signal components

and their frequency range, as well as the component varia-
tion in frequency with time, described by the IF. The IF can
be estimated using a peak detector in the T-F domain that se-
lects the frequency with the maximum value in the T-F rep-
resentation as a function of time. Figure 1 shows an exam-
ple of seizure and non-seizure EEG signals in the time, fre-
quency and joint T-F domains, in order to illustrate the dif-
ference between them and show how the TFD plot can pro-
vide more information about the IF, non-stationary nature and
multi-component characteristics of the signals than the time
or the frequency representations [3, 10, 15].

(a)

(b)

(c)

Fig. 1. Example of EEG signal with seizure (1st col.) and
non-seizure (2nd col.) activity in time (a), frequency (b), and
joint T-F domains (c).

2.3. T-F approach for EEG classification

A T-F approach for automatic classification of EEG seizure
activities includes the following steps: (1) finding the optimal
TFD that best represents EEG signals, (2) extracting features
that characterize the seizure activity pattern from this TFD,
and finally, (3) allocating the vector containing the extracted
T-F features to the relevant class (i.e. seizure or non-seizure),
using a multi-class classifier. The success of such approach
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depends mainly on the quality of the T-F features extracted
from the TFDs of EEG signals. These features need to have
the ability to characterize the seizure activity patterns, and
also to discriminate between different classes (i.e. seizure
with degree of severity: mild, moderate or severe).

3. PROPOSED METHOD: T-F IMAGE
DESCRIPTORS-BASED FEATURE EXTRACTION

This paper proposes new T-F features to describe visually nor-
mal and seizure patterns in the TFD. These features based on
image descriptors are extracted from the T-F representation
of EEG signals and are processed as an image using T-F im-
age processing techniques. The idea of the proposed feature
extraction is to detect and exploit all EEG information that
appears in the T-F image in order to characterize normal and
seizure activities (e.g. all components, high amplitude, nor-
mal or seizure patterns). In this way, we present a set of image
descriptors based on shape and texture as new T-F features for
detecting and classifying EEG seizure activities.

3.1. Shape-based features

By analyzing T-F images of the example shown in Figure
1(d), we observe that the high amplitudes can be exploited
to characterize the normal and seizure patterns. Color-based
image segmentation approach using k-means clustering was
adapted in our methodology to detect and extract the high
amplitude regions [16], and then to compute their statistical
and geometrical features. This approach aims to segment am-
plitudes in an automated fashion using k-means clustering.
In the proposed technique, the T-F image is segmented in 3
regions: low, medium and high-amplitudes; where only the
high-amplitude regions are exploited to define and compute
the shape-based features. Figure 2(b) shows the segmented
high-amplitude regions detected of the TF image shown in
Figure 2(a) using the proposed method, their binary image in
Figure 2(c) and their convex hull image (the smallest convex
shape that contains the high-amplitudes) in Figure 2(d).

We denote the TF image, binary-segmented and binary
convex hull images by I, Is and Ich, respectively. The mo-
ments of Is and Ich are used to compute some shape fea-
tures from the segmented regions, such as perimeter and com-
pactness. Five morphometric features based on the geometric
shape of the segmented regions in Ich and Is, can then be
defined as:

• Area, Perimeter and Compactness of the segmented re-
gion in Ich:
F1 =

∑
n

∑
k Ich[n, k]

F2 = (m30 +m12)
2 + (m03 +m21)

2

where mpq is the moment of order (p, q) defined as
mpq =

∑
n

∑
k n

pkqIch[n, k]
F3 = (F2)

2/F1

(a) (b)

(c) (d)

Fig. 2. Example of a TF image of an EEG signal (a) and the
segmented high-amplitude region (b) with their correspond-
ing binary (c) and convex hull (d) images.

• Area and Euler number of the segmented regions in Is:
F4 =

∑
n

∑
k Is[n, k]

F5 is the number of the segmented regions computed
using the Euler-Poicaré formula [17]

3.2. Texture-based features

Texture-based features are defined to characterize the texture
in I. These features are based on the statistical moments, en-
tropy, contrast and energy informations. The first and second
order statistics-based features, denoted respectively F6 and
F7, are computed as follows:

• First-order moments of I: F6 = 1
NK

∑
n

∑
k I[n, k]

• Second-order moments of I:
F7 =

√
1

NK

∑
n

∑
k (I[n, k]−M1)

2

The entropy-, contrast- and energy information-based fea-
tures are computed from the gray-level co-occurrence matrix
(GLCM1) C of I as follows [18]:

• Entropy : F8 = −
∑

n

∑
k (I[n, k] log2(C[n, k]))

• Contrast : F9 = −
∑

n

∑
k |n− k|

2 C[n, k]

• Energy : F10 = −
∑

n

∑
k (C[n, k])

2

1GLCM is a well known method for analyzing texture images which es-
timates image properties related to second-order statistics. Each entry [n, k]
in GLCM, C, corresponds to the number of occurrences of the pair of gray
levels n and k which are a distance d apart in original image.
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4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Methodology and evaluation criteria

During the classification step, a EEG signal is assigned to a
certain class (i.e. normal or seizure) based on the location of
its feature vector. We extracted the proposed features from the
TF image of EEG signals and used them to train a two-class
SVM classifier. The following statistical parameter was used
in order to evaluate the classification performances.

Total accuracy (ACC) =
TP + TN

(TP + FN) + (TN + FP)
(2)

where TP, TN, FN, and FP represent the true positive, true
negative, false negative, and false positive rates, respectively.

The performance of the proposed features for EEG clas-
sification is evaluated using the real EEG database described
in [19]. It consists of 5 sets of data referred to as sets A-E
where each set contains 100 artifact-free single-channel EEG
segments of 23.6 seconds duration acquired from normal sub-
jects and patients with epileptic seizures. Each EEG segment
has been recorded at fs = 173.6Hz sampling rate and has
4096 samples (23.6 × fs). The desired classification is done
in two different classes of EEG signals, namely: N and S. The
class N includes set A which contains EEG segments with-
out seizure acquired from 5 healthy volunteers and the class
S includes set E which contains EEG segments with seizure
acquired from 5 patients. Each class has 100 segments.

4.2. Analysis of results

The T-F feature set F = {F1, . . . , F10}, was extracted from
TF image of TFD of each EEG segment of length 5.9 sec
(with N = 1024 samples). Only the QTFDs listed in Table
1 are chosen in this simulation. The parameters of the MBD
and CWD were respectively chosen as β = 0.01 and σ = 0.9
with lag-window length of 127. These values are typical ones
for which the TFD has shown good performances in analyz-
ing EEG signals [15]. The window w[n] for the SWVD and
SPEC distributions was chosen to be a Hanning window of
length bN/4c samples. The simulations were carried out in
MATLAB. For the performance evaluation, one-against-one
SVM classifier was trained using the features extracted from
EEG signals in the database. We have compared the classi-
fication results for each QTFD. The database {N,S} that in-
cludes 200 EEG segments was split randomly into two parts;
50% of the data (i.e. 100 segments with 50 segments in each
class) were used for training and 50% for testing the classifier.
Table 2 shows the confusion matrices representing the classi-
fication results using the proposed features extracted from the
T-F images generated using different QTFD of the EEG sig-
nals; where ”Number of signals” indicates the number of EEG
segments used for the testing step. For every QTFD the total
number of EEG segments correctly classified as well as those

misclassified as other classes are shown including the over-
all classification accuracy. From the Table it can be noticed
that the use of the proposed features achieves a better clas-
sification result. This is confirmed by the total classification
accuracy calculated for each QTFD where the best results are
obtained in a range [94, 98]% for 100 EEG segments. This
can be improved by increasing the number of EEG segments
in the training-step. For example, experiments were carried
out by increasing the training data to 160 signals (i.e. 80%
for training and 20% for testing) and the results have led to
an overall accuracy in a range [95, 100]% (see the results be-
tween parentheses of Number of signals in Table 2). In addi-
tion, our proposed method outperforms the methods in [3],
which use only signal features and combined signal-image
features where their best total classification accuracy using
the same dataset {N,S} is in a range between [92, 95]% for
100 EEG segments.

TF image Number of signals Classifier outputs Total accuracy

QTFD Class 50% (20%) N S ACC ( % )

MBD N 50 (20) 47 (20) 3 ( 0) 95 (100)S 50 (20) 2 ( 0) 48 (20)

SPEC N 50 (20) 47 (20) 3 ( 0) 94 (95)S 50 (20) 3 ( 2) 47 (18)

SWVD N 50 (20) 49 (20) 1 ( 0) 97 (100)S 50 (20) 2 ( 0) 48 (20)

CWD N 50 (20) 49 (20) 1 ( 0) 94 (97.5)S 50 (20) 5 ( 1) 45 (19)

WVD N 50 (20) 50 (19) 0 ( 1) 98 (95)S 50 (20) 2 ( 1) 48 (19)

BD N 50 (20) 49 (20) 1 ( 0) 96 (97.5)S 50 (20) 3 ( 1) 47 (19)

Table 2. Confusion matrices of the EEG classification us-
ing the proposed features set F extracted from the TF images
generated from different QTFD, using 2-class SVM classifier
with EEG databset {N,S}.

5. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that it is possible to detect and
classify epileptic seizure activities in EEG signals using only
image descriptors-based features extracted from the TFD of
EEG signal considered as an image. The experimental results
on real EEG data, show that the use of T-F image-related fea-
tures provides a total classification accuracy by up to 98% for
100 EEG signals. Also, the classification performance of our
proposed method outperforms the performances of the meth-
ods proposed in [3] by 3% for 100 EEG signals. Finally, the
results obtained suggest us that it is important to pursue this
direction and focus on the extraction of other T-F image-based
features allowing to classify EEG seizures with their degree
of severity (i.e. mild, moderate or severe).
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