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ABSTRACT
Chronic effects of electrode implantation in the brain tissue
alter the neural channel signal-to-noise ratio (SNR) over time.
Variability of signal quality over time poses a difficult chal-
lenge in long-term decoding of neural signals for Brain Com-
puter Interface (BCI). Specifically, all channels observed dur-
ing a neural recording session may not be observed during
the next recording session. This paper describes a novel ap-
proach that effectively overcomes these challenges by iden-
tifying reliable channels and features in any given trial, esti-
mating unobservable or unreliable features and adapting the
neural signal classifier with no user input in real time. The
proposed decoder predicts one of eight arm directions with
an accuracy, unmatched in the literature, of above 90% in
two monkeys over 4-6 weeks, achieving robustness against
time and also varying environmental conditions. Application
of these decoders reduces neural prosthetic training time and
user frustration thus improving the usability of BCI.

Index Terms— Brain Computer Interface, Partial Obser-
vations, Signal Variability, Local Field Potentials

1. INTRODUCTION

Arm movement for Brain Computer Interface (BCI) can be
decoded from intention through intra-cortical recordings like
single unit activity (SUA) and local field potentials (LFP) [1,
2, 3, 4, 5]. Recent neural engineering advances improved the
recording capabilities of LFP over multiple months [6]. For
example, Simeral et al., showed the long-term (1000 days)
recording capability of LFP [7]. While these studies estab-
lish the long-term recording capability of LFP, their use in
long-term decoding applications has not received much atten-
tion. Day-to-day signal variability poses a difficult challenge
in long-term decoding from LFP. These variabilities mani-
fest in various forms: variations in signal power, change in
spatial patterns, etc., and result in variation in derived fea-
tures [8]. Recent studies show the success of advanced signal
processing techniques to overcome such long-term variabil-
ity. For example, extracting robust feature parameters [9],
or rapid prototyping [10] help overcoming such variabilities.

Daily re-training of closed-loop LFP decoders also achieves
long-term decoding [11]. However, such pauses to recalibrate
BCI cause user frustration [12]. While a BCI user learns to
modulate neural patterns to match the BCI [13], this process
requires effort and sometimes users are incapable of learn-
ing these patterns [12]. Moreover, these studies ignore the
variability of neural signals over multiple days. We also ob-
served that the signal-to-noise ratio (SNR) of LFP electrodes
varies over days due to acute and chronic effects of electrode
implantation in brain tissue [14]. Hence a practical BCI sys-
tem should cope with changes in signal variabilities, includ-
ing signal SNR over multiple days. In this paper, we present a
novel model that overcomes LFP variability by first identify-
ing and then evaluating only high quality (high SNR) channel
recordings.

A BCI system that requires fewer calibration sessions
helps users focus on rehabilitation tasks rather than neural
exertion to provide stable neural patterns [12]. Our approach
focuses on extracting useful neural patterns through out BCI
performance and incorporating these patterns in the decoder.
One of the challenges during such reinforcement learning
is the variation in the signal quality in terms of SNR [15].
While studies showed the efficacy of BCI adaptation for sta-
ble performance [11, 16], the effect of variable channel SNR
was not studied. Specifically, we observed loss of recording
channels as channels that have a high SNR during a session
might have a low SNR during the next session and vice-versa.
However, we noticed that the spatial patterns of the common
channels (with high SNR) remained consistent. The current
paper takes advantage of this observation and overcomes the
variability in signal quality. We also present a method to
estimate unobservable channel features by tracking the neural
pattern evolution in term of auto-regressive models.

The main contributions of this paper are 1) introducing
an arm direction decoder that automates channel selection by
virtue of SNR; 2) estimating unknown feature parameters by
modeling neural pattern evolution and; 3) adapting the ob-
tained decoder across multiple sessions to overcome signal
variability. These include channel quality and variability in
subject behavior due to both model latency and environmental
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Fig. 1: Timeline of the neural data to be used in the analysis.

effects. This adaptive decoder obtained above 90% decoding
of eight movement directions over 4-6 weeks of recordings in
two monkeys and required only a single session of dedicated
BCI training. Decoders that adapt to these changes reduce
user frustration with BCI and increase their practicality [12].

The rest of this paper is organized as follows: Section
2 summarizes the neural and behavioral data; Section 3 dis-
cusses the method and algorithms used for decoding; Section
4 presents the obtained results and discussion, and Section 5
provides concluding remarks and related future work.

2. EXPERIMENTAL SETUP

We trained two male rhesus monkeys (Macaca mulatta), H464
and H564 to sit in front of a screen and perform an instructed-
delay center-out task. During this task the subject moved a
manipulandum in a horizontal plane to move a cursor from
a central location to one of eight circular targets highlighted
on the screen. The targets are equal spaced around a circle of
9cm from the center. A timeline for each trial with a median
time spent at each epoch is shown in Figure 1. To receive a
juice reward the subject had to perform the task within the
time limits. We recorded and saved behavioral data (sam-
pled at 200Hz) including hand position, velocity, forces and
torques exerted at arm joints.

During this behavior task neural signals were recorded
using two silicon based electrode arrays (Cyberkinetics,
Foxboro, MA) implanted in the contralateral arm areas of
primary motor (M1) and dorsal premotor (PMd) cortices.
Each array recorded from 64 electrodes arranged on a 10x10
array with an inter electrode distance of 400µm. We recorded
both Single Units (SU) and local field potentials (LFP) dur-
ing these sessions. The analysis in this paper focuses on LFP
signals filtered in 0.3− 200Hz sampled at 1KHz.

We recorded several sessions of neural activity spread
over 6 weeks for H464 and 4 weeks for H564. Once the mon-
keys gained expertise, we introduced external perturbations
on the manipulandum during target reach. All the reaches
in that session experienced the same curl forces that acted in
a direction perpendicular to the arm movement. Two types
of forces were exerted viz. Viscous forces that are propor-
tional to the velocity of the hand movement, and; Stiffness
forces proportional to the position of the hand. These forces
were applied in both clockwise and counter-clockwise di-
rection. We chose forces to cause perceivable perturbations
to the hand, while allowing the monkey to complete the
hand reach [17]. Any successful decoder should overcome

Fig. 2: SNRs of LFP channels recorded on the first session in mon-
key H464.

the non-stationarities introduced by the different experiment
variations. Such a direction decoder is presented in the next
section.

3. METHOD

Human behavior, including arm movement, is inherently vari-
able and non-repetitive [18]. Each repetitive movement of
the arm involves a unique set of motor patterns. As there
exist multiple ways to perform a same task, we hypothesize
that arm position is encoded effectively by multiple neural
patterns that generate multiple motor patterns. Since, neu-
ral adaptation changes the spatial and temporal patterns of
the brain activity, we proposed that the decoding model also
needs a suitable adaptation strategy to track them [13, 19].
Identifying suitable neural patterns during BCI use and intel-
ligently incorporating them in the decoder accomplishes de-
coder adaptation [16].

3.1. Estimating SNR surrogate of LFP channels

Since the actual signal and noise powers of LFP signal are
unknown, we estimate a surrogate SNR statistic (SNRs) of a
given channel by measuring its deviation from the trial aver-
age. SNRs is calculated as a function of the deviation of a
single trial LFP xtr, from the signal averaged over multiple
trials conducted in a given session, 〈xtr〉, as shown in (1).

σtr =

√
1

T

∑
(xtr − 〈xtr〉)2

SNRs = 20 log(
1

σtr
) (1)

The SNRs of different channels over the session is pre-
sented in Figure 2. All channels that have an SNRs more than
−50dB are deemed non-noisy signals and used to train and
test the decoding models. We observed that 82 ± 5 channels
in H464 and 120± 2 in H564 had high SNRs.
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3.2. Model robustness against loss of LFP recordings

The decoding model,M = {X,w, φx}, is trained only over
a single session and its scope is limited to the electrode loca-
tions identified in that session. Here φx calculates the sim-
ilarity only over the channels (x) in training data X and w
represent the corresponding model weights. For example, φx
could be a radial basis function, or a linear correlation model
that compares two feature vectors. During BCI use the model
evaluation to predict the arm position p corresponding to a
neural data Y is computed as

p =
∑
i

wiφx(Xi, Y ) (2)

Without loss of generality, the neural data extracted on the
testing day, Y , and the training day, X , could be decomposed
as

Xx =

[
Xc

Xx

]
, Yy =

[
Yc
Yy

]
(3)

,where .c represents the common recordings from the training
and testing spatial patterns. The other subscripts represent
the electrode locations observed only on that particular ses-
sion. Ignoring uncommon channels (Xx, Yy) in both sessions,
the pattern similarity φx calculated only over these common
channels predicts the arm position as

p =
∑
i

wiφc(X,Y ) (4)

φc(X,Y ) = φ(Xc, Yc)

3.3. Estimating Partial Neural Spatial Patterns

The above method discussed in 3.2, estimates the similarity
of two neural pattern by selecting channels with high SNRs in
both sessions. Ignoring channels with low SNRs limits noise
creep and the model improves decoding accuracy. However,
this strategy ignores any information from the remaining high
quality channels. We estimate the similarity measure over all
locations x as φx(X,Y ), shown in eq (5).

φx(X,Y ) = φ(Xc, Yc) + φ(Xx, Ŷx)

φx(X,Y ) = φ(Xc, Yc) + φ̂(Xx, Yx) (5)

We find estimating model similarity efficient than estimat-
ing the neural features Ŷx. Recognizing that the similarity cal-
culated using the common channels is only a fraction of the
total estimate, we hypothesize that prior knowledge gained
from the channel and spatial pattern interaction provides ad-
ditional decoding information. We track the local correlations
between spatial patterns in the form of auto-regressive func-
tions. The observation and auto-regression are written as

φc(t) = Hφx(t) + ϑ (6)
φx(t+ 1) = Fφx(t) + η (7)

Table 1: Decoder performance and comparison across different
phases of the recordings. For monkey H564 the average decoding
is presented across all 20 recording sessions spread of 4 weeks. For
monkey H464 the average decoding is calculated over 37 sessions
spread over 6 weeks.

Session
Using
Fixed
Electrodes

Updating
Electrodes

Estimating
Partial
Observa-
tions

H464
Average Decoding
(6 weeks) 89.8 93.5 93.5

Before Field Forces
(2 weeks) 96.6 97.6 96.7

During Field
Forces (4 weeks) 89 93 93.1

New Field Forces
(9 sessions) 85 89.5 89.8

H564
Average Decoding
(4 weeks) 86.3 88.9 89.7

Before Field Forces
(1 weeks) 81.1 79.9 81.8

During Field
Forces (3 weeks) 86.9 89.9 90.6

New Field Forces
(4 sessions) 83.8 85.3 88.4

, where t represents the time step of target reach; F is the
auto-regressive parameter describing the evolution of spatial
patterns; H is the observation parameter that models φc as a
fraction of the variable φx. ϑ and η are zero mean gaussian
white noise variables representing the neural variability ob-
served in the measurements over days. Under perfect observ-
ability, we expect that observations follow the spatial correla-
tions. However, due to changes in neural patterns the obser-
vations deviate from the modeled evolutions. These equations
follow the Kalman filtering dynamical model system. Using
the ”Predict” and ”Update” phases of the Kalman filter, the
observation is filtered closer to the model estimates. The de-
sign of the Kalman filter parameters, involves calculating the
auto-regressive parameters, F and the respective noise covari-
ance on the neural samples recorded on the training session.
For this application we design the observation matrix, H, as a
scalar under the assumption that all spatial filters are partially
observed.

4. RESULTS AND DISCUSSION

The objective of the project is to design long-term decod-
ing capability that provides stable performance, with mini-
mal re-training sessions to mitigate BCI user frustration. All
the decoding models were initially trained on the first session
with no field forces and applied over chronological sessions
spread over 4-6 weeks that included sessions with novel exter-
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Fig. 3: Decoding Accuracy over multiple testing sessions recorded from subject H564 for decoders presented in the paper. We train the
decoders on neural data recorded on day 0. Field forces are applied on sessions after day 10 and vary on different sessions. We observe that
decoding accuracy is stable over 20 sessions and using high quality LFP signals improves decoding especially on day 15,16 and 20 (by 10%).

nal field forces. We measure performance as decoding accu-
racy (DA): percentage of accurately predicted targets during
each target reach. A random classification results in an accu-
racy of 12.5%. During each evaluation session, the model is
adapted after every K (= 25) trials. Adaptation of the model
begins first by predicting the direction from the neural pat-
terns. Under the assumption that the BCI user intends to reach
the target in a straight path, we compare the prediction to an
expected signal, modeled as a straight line from the center to
the predicted target [16]. The adaptation strategy needs only
accurate reaches to adapt the decoder by selecting neural pat-
terns that minimize the error between the prediction and the
desired straight line approximation. Feedback to the BCI sys-
tem could be delivered via multiple modes like vocal cues,
error related potentials, or residual muscle activity [15, 20].

Figure 3 presents the decoding accuracy over multiple
recording sessions for the monkey H564. In monkey H464
field forces were introduced after two weeks of no field move-
ment reaches and in monkey H564 after 10 days. Results from
the figures show the improvement of decoding results when
decoders consider only channels with high SNR. We observe
that using high quality channels consistently performs better
than a fixed channel decoder. Overall, the presented decoders
improved up to 3% accuracy over decoders with fixed chan-
nels. Table 1 presents the performance of these decoders in
different phases of recordings. In H564, the fraction of com-
mon channels between sessions is 98% ± 1 leading the ob-
servation model to follow the auto-correlation model closely.
This results in 3% decoding improvement over a fixed channel
decoder. In H464 this fraction is only 87%±4, resulting in an
improvement of 1% of decoding accuracy. Estimating miss-
ing unknown neural features improves decoding accuracy to

93%. Especially, the decoder performance is improved in ses-
sions that experience a change in the field force by 5%, as
shown in the last row of Table 1. Overall, we infer that using
session related high SNR channels improves decoding accu-
racy. Removing the low SNR channels eliminates any noise in
the model without affecting the quality of the neural patterns.

5. CONCLUSION

In this paper, we presented neural decoders that provide ro-
bust arm decoding against LFP variabilities over time, envi-
ronmental conditions like external field forces and also chang-
ing channel SNR. We observed that channels exhibit different
SNR over multiple recording sessions. This paper introduced
a method to estimate a surrogate statistic of SNR that and uses
the identified channels with high SNR for direction predic-
tion. The decoder presents a novel way of estimating unob-
servable neural patterns by modeling the feature correlations
and system dynamics. This model provided up to 94% direc-
tion decoding in one monkey and 90% accuracy in another
over 6 and 4 weeks respectively.

In the presented model we assumed that all spatial pat-
terns are observed at the same fraction and H is modeled as a
scalar. In fact, we can scale it to different observations. Pre-
liminary research suggests that the design of the matrix H
dictates the model observability and improves decoding. We
should note that recordings occurred in an open-loop fashion,
where the monkey received no feedback on decoder perfor-
mance. We anticipate that the decoder performance would
improve in a closed-loop setting, where subjects learn the dy-
namics of the model. Such decoders need few calibration ses-
sions and improve the practical usability of BCI.
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