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ABSTRACT

Using periodic auditory stimuli, it is possible to evoke so-called
auditory steady-state responses (ASSRs) in the brain, which can be
measured using electroencephalography (EEG). They can be used
to objectively estimate frequency-specific hearing thresholds, which
is especially useful for early hearing assessment in newborns. The
main problem is the extremely low signal-to-noise ratio (SNR), ne-
cessitating long measurements of up to an hour for a full audiometric
assessment. To speed up the detection, we apply a linear spatial filter
to the multi-channel EEG measurements, resulting in a new ’virtual’
channel with optimal SNR. To ensure robustness, we then consider a
hybrid ASSR detection method in which the original EEG channels
are complemented with this virtual channel. The addition of this vir-
tual channel successfully speeds up the detection of ASSRs by over
15 %. Furthermore our method not only speeds up the detection, but
also greatly improves its sensitivity, in particular in the (clinically
most relevant) lowest SNR scenarios. This could help reduce the
gap that still exists between behaviourally and objectively obtained
hearing thresholds.

Index Terms— Auditory steady-state responses, spatial filter-
ing, multi-channel EEG.

1. INTRODUCTION

Auditory steady-state responses (ASSRs) are periodic electric po-
tentials inside the brain, evoked by periodic auditory stimuli such
as a sinusoidally amplitude modulated (SAM) carrier signal. These
responses originate from the synchronous firing of numerous adja-
cent neurons in the brain and can be measured from the scalp using
electroencephalography (EEG).

In the common case of SAM stimuli, the resulting ASSR is also
a sinusoid, phase-locked to the modulating sinusoid, and hence also
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with the same frequency. Modulation frequencies are usually chosen
around either 40Hz or 80Hz because these result in responses with
highest SNR in respectively wakeful and sleepy states of the subject
[1]. The most common carrier signals are sine waves of 500, 1000,
2000 and 4000 Hz (cfr. commonly used audiometric frequencies).

By lowering the intensity of the auditory stimulus until an ASSR
can no longer be found, an objective hearing threshold (HT) can
be determined. If the carrier signal is (relatively) narrowband, only
part of the cochlea will be stimulated, which allows for a frequency-
specific HT estimation. Although these objective HT estimations
are typically about 10 dB higher than behaviourally obtained HTs,
both correlate well [2-4] which makes the objective HT estimations
clinically very relevant.

The main clinical use of objective HT estimation is for early
hearing assessment of newborns. A correct assessment of hearing
loss in the first few weeks after birth is important. It allows for
early adoption and fitting of cochlear implants (CI) or hearing aids
when necessary, offering the best opportunity for newborns to ac-
quire normal communication skills [5]. Additionally ASSRs have
been used in numerous audiological studies (e.g. [6,7]) as a research
tool in gaining insight in the human auditory system and can even
be useful to monitor anaesthesia [8]. Recently, ASSRs have also
been proposed as a new possible Brain-Computer Interface (BCI)
paradigm [9].

The main problem with measuring ASSRs is the extremely low
Signal-to-Noise Ratio (SNR) which makes immediate detection im-
possible, necessitating longer measurements. Moreover, for a full
HT assessment, stimuli with different carrier frequencies have to be
presented at different intensities and to both ears. Although multi-
ple carrier frequencies can be offered to the subject at the same time
using different modulation frequencies (cfr. the MASTER principle
[10]), the full assessment can still easily take up to an hour [11]. This
is problematic as it makes the procedure costly and time-consuming.
Scientific studies are often limited in depth or sample size because
of this considerable time cost. Therefore, both clinical and scientific
applications of ASSRs would greatly benefit from a more efficient
ASSR detection. This is the main goal of this paper.

Most clinical applications historically only use one EEG channel
to detect ASSRs. Nowadays however, EEG measurement devices
with 64 and even up to 256 electrodes are readily available. In this
paper we will leverage this availability of extra channels towards a
more efficient detection.

Using a spatial filter, channels can be linearly combined into one
virtual channel on which then standard one-channel detection meth-
ods can be applied. Some basic techniques have been experimented
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with so far. Source projection [12] is a means of signal maximiza-
tion and offers slight SNR improvements. Another commonly uses,
heuristic procedure is to select only some neurologically relevant
channels and to average these [13]. Independent Component Analy-
sis (ICA) has been applied successfully to reduce measurement times
in 7-channel measurements [14]. However, ICA is computationally
expensive and does not scale well with increasing number of chan-
nels. A promising approach used a two-step algorithm estimating
the signal steering vector and using the eigenvalue decomposition to
rotate it away from directions with high noise to obtain optimal SNR
properties [15]. Results for low SNR measurements were reported
to be poor however.

In this paper, we present an alternative algorithm to construct an
SNR-optimizing spatial filter that is successful, even at low stimu-
lus intensities. The spatial filter is constructed in a single step, us-
ing the generalized eigenvector decomposition (GEVD). For each
subject, one measurement with high amplitude auditory stimulus is
used for training of the filter, which can then be used for all fur-
ther measurements on the same subject. This is different from cur-
rent approaches and is key to a faster detection. Practically it fits
within the clinical HT assessment protocol which records multiple
subsequent ASSR measurements. To ensure robustness, the original
multi-channel EEG measurement is still used in addition to the spa-
tially filtered channel, resulting in a hybrid ASSR detection method.

The focus in this paper is specifically on low SNR measure-
ments, resulting from stimulus intensities near the HT (22-32 dBSPL
on normal hearing subjects). As detections in low SNR conditions
take the longest and have the lowest detection sensitivity, they are
the most relevant to optimise. Our method has been successfully ap-
plied to 64-channel EEG measurements, reducing the detection time
while at the same time increasing the sensitivity of detection, hence
providing a two-way improvement in the efficiency of ASSR detec-
tion.

The paper is organised as follows: In section 2 we introduce
the ASSR data model and the formal problem statement. Section
3 describes the spatial filter construction and the detection method
used to detect the ASSRs. Section 4 validates our approach through
an experiment on real EEG data and section 5 concludes the paper.

2. DATA MODEL AND PROBLEM STATEMENT

The auditory stimulus z(t) is an SAM sinusoid with modulating fre-
quency fm, carrier frequency f. and amplitude A:

z(t) = A (1 + sin(27 frn x t)) sin(27 fe * t). (1)

The resulting ASSR signal component in each EEG channel can
then be modelled as a sine wave with known frequency, equal to the
modulation frequency f,,. Depending on this modulation frequency
there can be more than one intra-cranial source that generates the
ASSR [6]. However, without much loss of accuracy, one can usually
assume that the ASSR is generated by one point source in the brain.
Under this assumption, and since electromagnetic propagation from
the source to the electrodes is instantaneous, the measured ASSR has
the same phase ¢ in all of the EEG channels [12] (this has also been
validated in our experimental data, as demonstrated in Figure 1).
This means that the EEG signals can be described by the following
m-channel signal y (¢):

y(t) =d sin(27 fint + ¢) + n(t)

s(t) +n(t)
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Fig. 1: ASSR waveform in all 64 EEG channels after bandpass fil-
tering around f,,= 40 Hz and averaging over epochs with a length
of ﬁ =25ms, i.e. one period of the modulating sine.
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where the steering vector d contains the gains of the ASSR signal in
each of the m channels, and the m-channel signal n(¢) models the
EEG background noise which is assumed to be uncorrelated with the
ASSR (E[n(t) sin(27 fmt + ¢)] = 0) and has zero mean (E[n] =
0).

ASSR detection comes down to rejecting the possibility that the
measurement y (¢) originates from noise , i.e. rejecting the null hy-
pothesis

Hy :y(t) =n(t) @
and thereby accepting the alternative hypothesis
Hiy :y(t) =s(t) + n(?). (5)

For single-channel data, some standard statistical detection methods
are available, most of which have the same statistical power [16].
We will use the Hotelling T? (HT2) method [17] because of prac-
tical considerations. For multi-channel data no practical statistical
detection method has been proposed in literature, so later in the pa-
per we will propose our own. We will use it as a reference method
that does not apply any spatial filtering but does use all 64 available
channels.

Our goal is to speed up ASSR HT estimation by optimally using
the available multi-channel EEG measurements. An HT estimation
protocol typically consists of multiple subsequent ASSR measure-
ments with decreasing intensity of the presented auditory stimulus.
Each measurement lasts until an ASSR is detected or if, after a maxi-
mum time duration, no ASSR is found. In the latter case the protocol
is halted and the objective HT is determined as the lowest stimulus
intensity with a detected ASSR.

3. METHODS

To achieve a more efficient ASSR detection we construct a spatial
filter using a training measurement, preferably with high SNR (i.e.
resulting from a high intensity auditory stimulus). Assuming spa-
tial coherence of signal and noise sources to remain constant, this
filter can then be applied to each of the following multi-channel
ASSR measurements on the same subject. This way, one new ’vir-
tual’ channel is created with a higher SNR than any of the original
channels. Traditional ASSR detection methods can then further be
applied to this resulting channel, which will yield faster and more
sensitive detection results.



3.1. GEVD-based Spatial Filter Construction

As we are only interested in the part of the measurement y(¢) (or
n(t)) around the modulation frequency f,, we will assume that all
signals are bandpass filtered. We aim to find the spatial filter W that
maximizes the expected power at the modulation frequency for a
signal-plus-noise measurement, while minimizing it for a noise-only
measurement:

X Bllly ()" wl[3]
W = arg mar—ar—— a7 - (6)

w Ef|n(t)"wl[3]

By expanding the 2-norm, this can be rewritten as
T
. w' Ryw

= — 7
w=arg mvfzm(wTRnw 7

where R, = E[y(t)y(t)”] is the signal-plus-noise covariance ma-
trix and R,, = E[n(t)n(¢)7] is the noise covariance matrix. Be-
cause noise and ASSR were assumed to be uncorrelated, it follows
that E[s(t) n(t)”] = 0 resulting in R, = Rs + R,, where R =
E[s(t)s(t)”]. Therefore equation (7) can be rewritten as

T
W = arg maz(1l + %) (8)
T
w' Rsw
=arg mgm(m . )

This shows that optimizing the signal-plus-noise to noise ratio (as in
(7)) is equivalent to optimizing the SNR (as in (9)).

It is known that the solution to the optimization problem stated
in (7) is given by the principal generalized eigenvector (GEVec:)
of the matrix pencil (R, R,,) [18]:

W = GEVec: (Ry, R,,). (10)

Once the spatial filter W is constructed, it can be applied to sub-
sequent measurements on the same subject to speed up the rest of
the HT assessment. Spatial filtering of a measurement results in a
new, virtual channel y(t) = y(¢)” w. Statistical detection can then
be applied to this single virtual channel, the same as if it were a real
channel.

3.2. Estimation of the Covariance Matrices

To calculate the spatial filter W as in (10), the covariance matrices
R, and R, have to be estimated first. The straightforward way
to do this, is to use two measurements: one with and one without
auditory stimulus, for the calculation of respectively R, and R,,. In
practice however, we will not record such a second measurement but
rather estimate both R, and R, from the same measurement, using
different frequency ranges through spectral filtering.
For estimation of R, we will use the frequency range

[fm — 0, [fm +9] (ASSR present) (11)

while for R,, we will use
[fm—0—4A, fm—7] and (12)
[fm+9d, [fm+d+A] (only noise present) (13)

for some bandwidths ¢ and A. This assumes the noise spatial coher-
ence to be constant in a limited frequency range 2(5+ A) around the
modulation frequency. Estimating the necessary covariance matrices
this way is more practical as it requires only one training measure-
ment instead of two, saving time.
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3.3. ASSR Detection

As mentioned before we will use the HT?2 test for detection. To this
end, a single-channel measurement (or virtual channel such as y(t))
first has to be split in epochs of equal length (typically 1s), where
this length is also a multiple of the modulation period ﬁ Then
these epochs are all transformed to the frequency domain using the
Fast Fourier Transform (FFT). For each epoch only the frequency bin
corresponding to the modulation frequency is retained. Note that the
resulting sequence of complex numbers has an expected average of
zero for noise-only measurements, and a non-zero expected average
for measurements containing an ASSR. In fact, phase and amplitude
of this average FFT bin are good estimators of the ASSR phase ¢
and amplitudes (elements of d).

The HT2 test then takes the aforementioned sequence of com-
plex numbers as an input and computes a significance level s, with
0 < s < 1. This number equals the likelihood that these (or
more extreme) observations can be explained by zero mean Gaussian
noise. Finally the null hypothesis Hy is rejected (= ’successful de-
tection’) if the obtained significance level is lower than a pre-defined
threshold 7', i.e. s < T'. It should be noted that on top of normal
thresholding the channel was required to stay below this threshold
for 15 subsequent seconds to avoid possible artefacts in the data to
trigger a detection.

As true EEG background noise might not be perfectly Gaussian,
the computed significance s might differ from the true likelihood that
these observations can be explained by EEG background noise (as
opposed to Gaussian noise). Typically an a-specificity or false posi-
tive (FP) rate of 5% is desired. We can experimentally determine the
corresponding threshold 7" by ’detecting” ASSRs in measurements
without ASSR present and adjusting the threshold until 5% of these
ASSR-less measurements trigger a detection. In practice however,
we will re-use our EEG measurements with ASSRs present, but test
at frequencies other than the modulation frequency.

More generally we will construct a full Receiver Operating
Characteristic (ROC) curve that plots the sensitivity, also known
as the True Positive (TP) rate, versus the a-specificity (FP rate),
while varying the threshold from zero to one. By constructing this
curve both for the reference method (explained below) and our own
method we obtain an objective comparison of the detection perfor-
mance. Also, the threshold corresponding to the point of clinical
interest with 5% a-specificity can easily be found by this method.

3.4. Reference and "Hybrid’ Method

We will compare our method with a reference method (denoted by
"MC ref’): it uses the full multi-channel measurements, but does
not apply any spatial filtering. The channels are combined at the
detection level through a simple, heuristic method: for a successful
detection, 8 out of the 64 available channels are singly required to be
significant (s < T') for a period of 15s. We will denote the threshold

used for this reference method by T e, ;-

To benefit both from the improved sensitivity and detection
speed on the spatially filtered channel and from the robustness of
the multi-channel reference method, our method will be devised
as a hybrid of both (denoted by "MC + SC spat’). A detection is
considered successful when one of both detection methods detects a
response. Our hybrid method therefore uses two thresholds, denoted
respectively as Tsc), 50 @0d ThC), i -



4. EXPERIMENTAL RESULTS

4.1. Set-up

Eight normal hearing subjects aged 18-24 were asked to sit and re-
lax in an electromagnetically shielded and soundproof room. Their
EEG was measured with a 64-channel BioSemi ActiveTwo set-up.
Electrodes were placed on the subjects’ head according to the inter-
national 10 - 20 system. Subjects were presented an auditory stim-
ulus as in (1) with modulation frequency f», = 40 Hz. Auditory
stimuli were presented at different intensities A; one measurement
at 82dBSPL (high intensity, used for training) and two at respectively
34 and 22dBSPL (near-HT intensities, challenging for ASSR detec-
tion). This procedure was performed twice for different carrier fre-
quencies f.: 500 and 2000 Hz. The 16 training measurements lasted
only 150s each, the 32 evaluation measurements lasted 600s each.
The EEG was sampled at 8kHz and the measurements were down-
sampled to S00Hz and notch filtered at 50 Hz to remove power-grid
noise.

Each training measurement was duplicated and each copy was
bandpass filtered differently as described in section 3.1, with sec-
ond order sinc filters (6 = é Hz, A = 12 Hz), to allow the con-
struction of Ry and R,. The spatial filter W was calculated as
w = GEVeci(Ry,R,). This spatial filter was then applied to
all other measurements on the same subject at the same carrier fre-
quency, resulting in one virtual channel for each of these measure-
ments.

Finally, a hybrid detection (as explained in section 3.3) was per-
formed on the virtual channels together with the original 64-channel
measurements, for 50 different values of the thresholds (T'sc), .14
and Ty, p54)- Note that this would result in 2500 different thresh-
old pairs. As most of these are suboptimal, we only retained the
threshold pairs which give the highest sensitivity for each value of
the a-specificity.

The results of the multi-channel reference method were calcu-
lated as explained in section 3.3, again for 50 different values of
Trc,..;-

4.2. Results

Figure 2 shows the ROC curve comparing the hybrid method’s (MC
+ SC spat) detection performance with the reference method (MC
ref) in terms of sensitivity for all 32 evaluation measurements. Ad-
ditionally the green dashed lines with triangle markers show what
would happen if only the spatially filtered channel would be consid-
ered and no hybrid detection would take place, i.e. Tscy,, ;.0 = 0
(denoted by ’SC spat’). Figure 3 shows the same ROC curve, but
now zoomed in around the clinically relevant 5% a-specificity.

It is clear from the figures that the hybrid method outperforms
the reference method by a fair margin concerning sensitivity. Figure
3 also reveals that although detection on the single spatially filtered
channel (SC spat) and the multi-channel measurement (MC ref) have
similar results, combining them still offers significant improvement
(MC + SC spat), demonstrating complementarity of both methods.

Method Tye Tsc Sensitivity | Measure Time(s)
MC + SC spat | 0.007 | 0.005 0.75 309

SC Spat / 0.01 0.66 338

MC ref 0.006 / 0.59 382

Table 1: Detection times, thresholds and sensitivity results at 5%
a-specificity.
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Fig. 3: Same ROC curve as Figure 2, but now zoomed in at the
clinically relevant 5% a-specificity

We interpret this performance increase as the result of combining the
improved sensitivity of the former method with the robustness of the
latter.

In practice, as mentioned before, only the thresholds and detec-
tion times at the optimal points at 5% a-specificity are of clinical
interest. These can be found for the different methods in table 1. If
detection was not successful, the detection time was set to the maxi-
mum measurement time, i.e. 600s. The table shows that the average
measurement time of the hybrid method is more than 15% lower than
without spatial filtering.

Finally we would like to note that the increase in sensitivity was
very apparent, certainly at the 22dBSPL measurements (at 32dB-
SPL less so because both methods did well). The decrease in mea-
surement time however seems to be very measurement-specific and
therefore has a high variance.

5. CONCLUSIONS

In this paper we have presented an algorithm for linear spatial
filtering that, when applied to multi-channel EEG measurements
containing ASSRs, optimizes the SNR in the resulting channel. We
have shown on real EEG measurements that our hybrid detection
method using both the spatially filtered channel and the original
multi-channel measurement successfully improves detection effi-
ciency, both in terms of an improved detection sensitivity and a
reduced measurement time.
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