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ABSTRACT
Recent work has demonstrated the feasibility of extracting se-
mantic categories directly from cortical measures (e.g., elec-
troencephalography, EEG) during receptive tasks. Here, we
automatically classify speech stimuli as either synonymous or
non-synonymous with a prior prime in a speech-receptive task
given only EEG data with up to 86.84% accuracy. An analysis
of variance reveals no significant difference among support
vector machine and k-nearest neighbours classifiers, but a sig-
nificant effect of the individual subject on accuracy. To per-
form classification, we reduce the highly-parameterized space
by three successive techniques: a ranking based on t-test simi-
larity, another based on principal components analysis (PCA),
and a third on linear discriminant analysis.

Index Terms— Electroencephalography, feature selec-
tion, semantic classification

1. INTRODUCTION

Feature extraction and selection are especially pertinent to
electroencephalography (EEG) signal classification, given the
high degree of noise, low spatial resolution, and relatively
large channel redundancy of EEG data. Despite these in-
herent challenges, EEG signal classification is increasingly
popular across applications including silent-speech interfaces
[1, 2], biometric authentication [3], epilepsy prediction [4],
and brain-computer interfaces (BCI) for spelling [5].

This paper explores a variety of EEG-based features
in a semantic binary classification task to distinguish be-
tween speech stimuli that are either synonymous or non-
synonymous with an initial prime word. To find relevant
features, we rank a large pool of stochastic features with
t-tests of significant difference between classes. Given this
ranking, we further reduce the dimensionality using principal
components analysis (PCA) and linear discriminant analysis
(LDA). The final reduced feature set is then sent through
two binary classifiers: a support vector machine (SVM) and
k-nearest neighbours (KNN).

1.1. Background

Previous work in classification of EEG signals has used a va-
riety of features including auto-regressive models [2, 3] and

common spatial pattern (CSP) filters, the latter of which has
been effective within silent-speech interfaces [1]. The par-
ticipants in that study either imagined speaking one of two
vowels (/u/ or /a/) or, as a control, remained alert without any
conscious effort [1]. The CSP method was used to maximize
the discriminative variance between each of the 3 pairwise
classification subtasks (/u/:/a/, /u/:control, /a/:control) and a
binary non-linear SVM classifier was run on each subtask.
Classification accuracies ranged from 67-79% for /a/:control,
72-82% for /u/:control, and 56-72% for /u/:/a/.

A more typical approach is to preprocesses EEG sig-
nals using ICA and to learn the coefficients of a univari-
ate autoregressive (AR) model as a feature set. For exam-
ple, Brigham and Kumar [2] used this approach along with
artefact-rejection and source-selection based on the Hurst ex-
ponent to distinguish syllables /ba/ and /ku/. While accuracy
was not significantly higher than chance across all their sub-
jects, the same method without the Hurst exponent selection
process was shown to be highly effective at identifying the
thinker’s identity given their EEG data [3]. This AR approach
was extended to a much larger data set of 120 subjects where
subjects were presented with visual stimuli intended to induce
a visual evoked potential, providing up to 98.96% accuracy
in subject identification [3].

Dal Seno et al. used a genetic algorithm to choose a dis-
criminative set of features for use in a logistic classifier to
detect a P300 event-related potential [5], which further drove
an online BCI speller. Similarly, D’Alessandro et al. used
genetic algorithms to select a subset of a wide range of sig-
nal features, with the goal of predicting epilepsy in a patient
using a probabilistic neural network classifier [4].

2. DATA

Our EEG data are adapted from Hohlfeld et al. [6]. Here, sub-
jects were first presented with an auditory ‘prime’ word, fol-
lowed immediately by a second auditory ‘target’ word. Sub-
jects were instructed to determine whether the target was syn-
onymous or non-synonymous with the prime as quickly as
possible, and press one of two buttons to express that de-
cision. Each subject was presented with 120 distinct syn-
onymous noun pairs and 120 distinct non-synonymous noun
pairs. Each pair was used twice for a total of 480 trials pre-
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sented in different random orders for each subject. Here, we
use all data from all 5 subjects that were available to us. Aver-
ages of event-related potentials across all stimuli for one sub-
ject, for both synonym and non-synonym targets, are shown
in Figure 1

The EEG data were recorded using 60 channels sampled
at 200 Hz, with electro-oculogram (EOG) signals simultane-
ously recorded to facilitate artefact removal. The EEG data
was re-referenced to the average of the A1 and A2 electrodes
and segmented into fixed-length trials. Certain single trials
were rejected if at any point the signal amplitude went above a
± 75 µV threshold [6]. In this paper, we performed a prepro-
cessing step to further remove ocular artefacts using EEGlab’s
eye movement correction procedure (EMCP) [7, 8]. Each trial
was cropped to a period beginning at the target stimulus onset
and ending one second later.

Fig. 1: The neural activity of subject 2, averaged over a) syn-
onym, and b) non-synonym sets.

(a) (b)

3. FEATURE EXTRACTION

For each trial and for each channel, the signal is first seg-
mented into overlapping windows, empirically determined to
be about 10% of the epoch length, with a window overlap of
50%. We then capture a number of features from each win-
dow, namely the minimum and maximum values, the mean,
standard deviation, and variance over the epoch, maximum -
minimum, maximum + minimum, as well as skewness and
kurtosis where
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where x is the windowed signal, n is the number of samples
in the window and x̄ is the window mean. Additionally, we

take the mean and minimum value over the absolute values
of the window. These features are concatenated into a vector
for each window, along with their velocities and accelerations
(1st and 2nd frame differences) .

The matrix of features, their velocities, and their acceler-
ations over all windows in an epoch yields a matrix on the or-
der of 10,000 dimensions, which is unsuitably large given the
amount of training data. To overcome overfitting, we score
each dimension according to the t-test, and take a subset with
empirically low associated p-values. These p-values are com-
puted using Welch’s t-test between the synonymous and the
non-synonymous groups. Theoretically, lower p-values in-
dicate that the groups are more clearly differentiable along
the given dimensions, which can in turn be ranked. Empiri-
cally, choosing the 100 dimensions with the lowest p-values
was found to be most effective. Since we are not perform-
ing hypothesis testing, handling multiple comparisons does
not apply (applying Bonferroni correction would not affect
the ranking, in any case). Although the p-values calculated
here do not assume equal variances between the distributions
of the synonyms and non-synonyms, it does assume that the
feature dimension in each case is normally distributed. The
Lilliefors test [9] on each dimension reveals that 59.4% and
59.9% of all features are normally distributed in the synonym
and non-synonym data, respectively, at α = 0.05. An exam-
ple is shown in Figure 2.

Fig. 2: A quantile-quantile plot showing an example feature
dimension in the synonym case, revealing the dimension is
approximately normal.
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4. DIMENSIONALITY REDUCTION

PCA linearly transforms a set of variables into new set of or-
thogonal variables called principal components in which each
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successive dimension contains a maximum amount of the it-
eratively remaining data. Here, x ∈ RD is a vector consist-
ing of D correlated zero mean random variables. We linearly
transform the input data to a d dimensional (d << D) linear
subspace that captures most of the variability in x. To find
the first principal component, we find a unit vector b1 ∈ RD
such that the variance of the projected data bᵀ1x is maximized.
If y = bᵀ1x is the projected data, then the variance is given
by E(y2) = bᵀ1Σb1, which Σ is the covariance matrix of x,
i.e., Σ = E(xxᵀ)−E(x)E(x)ᵀ. We find the unknown vec-
tor b1 by solving a constrained optimization problem using
Lagrange multipliers as follows [10]

arg max
λ,b1

bᵀ1Σb1 − λ1(bᵀ1b1 − 1), (1)

where λ1 is the Lagrange multiplier. It is straightforward to
show that λ1 must be the largest eigenvalue of the covari-
ance matrix Σ and b1 is the eigenvector corresponding to the
largest eigenvalue. In general it can be shown that for the kth
principal component of x, bᵀkx, we have E(bᵀkΣbk) = λk,
where λk is the kth largest eigenvalue of the covariance ma-
trix and bk is the corresponding eigenvector.

LDA searches for directions providing the maximum
linear discrimination of classes while reducing overall di-
mensionality [11, 12]. To achieve this, within- and between-
class scatter matrices are defined. The within-class scatter
matrix, ΣW , represents the scatter of samples around their
class means, and the between-class scatter matrix, ΣB , repre-
sents the scatter of class means around the total mean. LDA
looks for the direction in which maximum class separabil-
ity is achieved by projecting the data into those directions.
After this projection, all the samples belonging to the same
class stay close together and well-separated from those of
the other classes. The LDA transformation matrix, ΦLDA,∆,
into a ∆-dimensional (∆ < D) space is given by ∆ lead-
ing eigenvectors of Σ−1

W ΣB [12]. If K denotes the num-
ber of classes and Rank(ΣB) ≤ K − 1, then the reduced
dimension by the LDA technique is at most K − 1, i.e.,
∆ ≤ K − 1. Therefore, instead of finding leading eigen-
vectors of Σ−1

W ΣB , one can solve the generalized eigenvalue
problem ΣΦLDA = ΣWΦLDAΛ, where Λ is the diago-
nal eigenvalue matrix and the desired ∆ LDA features are
given by p columns of ΦLDA corresponding to the largest
eigenvalues of Λ.

5. EXPERIMENTS

In this paper, we use the proportion of total variance [10]
to estimate the optimal number of principal components. In
other words, the number of principal components, l, is the
smallest integer that satisfies the inequality∑l

i=1 λi∑D
i=1 λi

≥ 0.98. (2)

where D is the total number of principal components, λi, i =
1, . . . , D is the ith eigenvalue of the covariance matrix of the
observed data, and l is the number of components that com-
promise 98% of the total variance. The value of l depends on
the statistics of the data and is not fixed, for example for the
first and the third subject we found l = 25 and for the second
subject l = 30.

As mentioned, the total number of LDA features, ∆, is
always less than or equal to the number of classes minus one.
Since we have just two classes in these experiments (synonym
or non-synonym), we must set ∆ = 1, meaning the output of
the PCA step will project into a one-dimensional space.

We compare two classifiers on the reduced dimensions.
The linear support vector machine (SVM) classifier [13],
which tries to find a decision boundary (a hyper-plane for
linear SVM) to separate two classes with the largest possible
margin [14]. The k-nearest neighbours (KNN) classifier is
a simple supervised non-parametric algorithm that classifies
observations based on a similarity measure (i.e., Euclidian
distance here) to previously seen examples. For the KNN
classifier, we set k = 1 (see section 6). Figure 3 shows the
average accuracy of the SVM classifier over varying number
of principal components, with standard error.

For each subject, we randomly choose 90% of avail-
able samples as the training set and the remaining 10% as
the test set, constituting 5 sets of thinker-dependent mod-
els. Figure 4 shows the accuracies of applying SVM and
KNN on the one-dimensional LDA features, as well as the
accuracy from applying SVM on the raw 100-dimensional
features. Given a two-way analysis of variance, there is no
significant difference among the classifiers (F2 = 0.21, p =
0.82, but there are significant differences due to subjects
(F4 = 11.91, p < 0.005), with mean accuracies ranging from
65.22% to 84.21%.

6. DISCUSSION

Recent work has demonstrated the feasibility of extracting se-
mantic categories during receptive language, given fMRI [15]
and EEG [16] data. In this paper, we automatically classify
speech stimuli as either synonymous or non-synonymous with
a prior prime in a receptive task given only EEG data with up
to 86.84% accuracy, although this is highly dependent on the
individual subject. To do so, we reduce the highly parameter-
ized space by three successive techniques: a ranking based on
t-test similarity, PCA, and LDA.

Several approaches have been proposed to determine the
appropriate number of principal components (e.g., see [17,
18]). Although the method of proportion of total variance
(used in this paper) is generally advocated by statisticians
[10], there has been some evidence against its reliability [19].
A comparison of optimization methods, given these data, is
the subject of future work. Furthermore, we are consider-
ing alternatives to LDA, including locally linear embedding
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Fig. 3: Mean classification accuracy (error bars are σ/
√
n)

using the SVM classifier as a function of the number of prin-
cipal components.
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Fig. 4: Classification accuracy for each subject and classifier.
Note that not all subjects in the original work by Hohlfeld
et al. [6] were available to us, but the original subject ID
numbers are retained.
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(LLE) [20], ISOMAP [21], multidimensional scaling (MDS)
[22], and principal curves [23]. For example, we repeated
the experiment for the fourth subject by replacing LDA with
LLE, which is a well-known nonlinear dimensionality reduc-
tion technique that maps the high dimensional data into a
lower-dimensional space such that the local structure in the
data is preserved during the mapping1 [20]. However, the re-
sultant accuracy of 70.45% did not provide any gains.

Although not mentioned in section 5, we also run a C4.5
decision tree and a naı̈ve Bayes classifier on our data, but
accuracies were in all cases lower than the reported SVM
results. We have also swept over other values of k in the
KNN classifier without significantly improving performance,
although further optimization is the subject of future work.

Ongoing work involves exploring additional features and
augmenting the simple window functions used here. In pre-
liminary experiments, features based on the Fourier transform
of short-time windows have not performed particularly well.
This may be due to increased non-normality of those features,
or to possible decreases in temporal resolution. We are also
exploring AR coefficients [2, 3] and other features [4].

Finally, the recorded EEG signals may be corrupted with
artefacts due to scalp impendence or subject movement.
Therefore, before the feature selection step, we need to per-
form noise reduction to estimate the clean EEG signals. The
main challenge here is that the statistics of the noise are not
known a priori and there is no training data available to esti-
mate the clean signal by observing noisy versions. Ongoing
work involves applying unsupervised [24] estimation of clean
versions of EEG signals as a pre-processing step.
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