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ABSTRACT 

 

In Wireless Body Area Networks (WBAN) the energy 

consumption is dominated by sensing and 

communication. Previous techniques exploited the 

sparsity of the signal (in transform domains) to reduce 

communication costs for EEG transmission. For the first 

time, in this work, we propose to jointly exploit sparsity 

and rank-deficiency of the multi-channel signal ensemble 

in order to reduce both sensing and communication power 

consumptions. We test our method with state-of-the-art 

recovery techniques and find that the reconstruction 

accuracy from our method is considerably better and that 

too at lower energy consumption.  

 

Index Terms— EEG, WBAN, Compressed Sensing, 

Matrix Completion. 

1. INTRODUCTION 

In this work, we are particularly interested in 

telemonitoring of EEG signals using Wireless Body Area 

Network (WBAN). In WBAN, the signal is encoded at 

the nodes where computational power is limited while the 

decoding is at the base station where computational power 

is not at a premium. Compressed Sensing (CS) based 

techniques is a good solution to this problem because it 

requires a low-complexity encoder and sophisticated 

decoder. Traditional transform coding based methods are 

not suitable for such a scenario. 

Previous CS based techniques [1-4] have been able to 

reduce the energy consumption required for processing 

and communication. It samples the full signal (thus does 

not reduce the sensing cost); projects the sampled signal 

onto a lower dimension thereby compressing it; and 

finally transmits the compressed signal - thereby reducing 

the communication cost. Since the projection is linear, the 

processing cost is low. CS requires a smart decoder since 

it has to solve an optimization problem to recover the 

EEG signal from the lower dimensional projections. 

There is only a single work which was able to reduce 

the sampling power by randomly sub-sampling the EEG 

signals and recovering the full multi-channel signal 

ensemble by exploiting its rank deficiency [5, 6]. The 

basic assumption was that, since the EEG channels are 

correlated with each other, the multi-channel signal 

ensemble will have a low-rank. It was shown in [5], that 

the energy savings from the under-sampling scheme can 

save upto 50% of the total energy in the WBAN. Owing 

to limitations in space, we cannot show the power 

analysis in this work. The interested reader can peruse [5]. 

In this work, the problem remains the same, i.e. we 

propose to randomly sub-sample the EEG signals from 

multiple channels. But instead of using only rank-

deficiency [5], we will also exploit the sparsity of the 

signal ensemble in a transform domain for its recovery.  

The rest of the paper is organized into several 

sections. The contributions from prior works will be 

discussed in section 2. The proposed formulation is 

described in section 3. We discuss the experimental 

results in section 4. Finally the conclusions of this work 

are discussed in section 5. 

2. LITERATURE REVIEW 

One of the earliest works that applied CS for EEG signal 

compression and transmission is [1]. It projected the EEG 

signal onto an i.i.d Gaussian basis for compression and 

used CS to recover the EEG signal by exploiting the 

signal’s sparsity in the Gabor domain. The work [1] 

employed a synthesis prior formulation for sparse signal 

recovery using Gabor as a sparsifying basis. This paper 

uses a Gaussian matrix for compression; for practical 

reasons, a Gaussian compression basis is not very 

suitable; since the matrix is dense and therefore is neither 

memory efficient nor easy to be operated with. In [2], 

different sparsifying transforms were compared – 

wavelets, Gabor, splines; it was reported that Gabor 

yielded the best reconstruction results.  

The possibility of exploiting inter-channel correlation 

in order to improve EEG signal reconstruction was 

mentioned in [1], but there was no concrete idea regarding 

how to model it. This problem is partially addressed in 

[3]. They do not explicitly model the inter-channel 

correlation, but frame a joint reconstruction problem 

where the signals from all the channels are reconstructed 

simultaneously. This work uses wavelets as the 

sparsifying basis and a binary matrix of randomly 

837978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



positioned 1's and 0's as the compression basis. Such a 

binary compression matrix is easy to store and operated 

with. 

A recent study assumes a block structure of the EEG 

signals [4] in a transform domain (DCT or wavelet). 

There is no theoretical or physical intuition behind this 

assumption; however it was shown in [4] that a Block 

Sparse Bayesian Learning (BSBL) algorithm yields good 

recovery results.  

It must be remembered that although these techniques 

are loosely termed as ‘Compressed Sensing’ – in reality 

they are not. The philosophy of CS is to sample less than 

the Nyquist rate. In EEG, this has not been done – the 

signal is fully sampled; it is only compressed later on. 

Such a sample-and-compress paradigm does not adhere to 

the CS philosophy.  

3. PROPOSED APPROACH 

The studies discussed so far aimed at reducing only the 

communication costs; they sampled the full signal 

(therefore does not reduce sensing cost) and compress it 

by projecting onto a lower dimension by Gaussian / 

Binary matrices. The schematic diagram of the process is 

shown in Fig. 1. 

 
Fig. 1. Information Processing Pipeline for previous 

methods 

In [5, 6] random sub-sampling of the EEG signals is 

proposed; this reduces sensing energy. The schematic is 

shown in Fig. 2.  

 
Fig. 2. Information Processing Pipeline for random under-

sampling 

In this scenario, the acquired signal is inherently 

compressed. Thus, we do not need to expend any energy 

in processing (for compression). The other benefit of this 

scheme is that we do not need a storage buffer and a 

multiplier. This helps in reducing the hardware footprint 

and promotes miniaturization.  

3.1. Sparsity 

We are measuring the signal in time domain, i.e. in 

Dirac basis. EEG signals are not sparse but have a sparse 

representation in a transform domain like wavelet [3] or 

DCT [3, 4]. Unfortunately if the signal is measured in the 

Dirac basis, sparsifying transforms like DCT and wavelet 

are not a good choice; this is because CS requires the 

sparsity basis to be maximally incoherent with the 

measurement basis [7]. The DCT and wavelet transforms 

are not too incoherent with the Dirac measurement basis; 

hence one cannot expect good recovery results from such 

sparsifying transforms.  

Furthermore, previous CS based recovery techniques 

[1-4] operated on the EEG signals on a piecemeal fashion. 

They sparsified each of the channels separately and did 

not account for inter-channel coherence. In this work we 

propose to exploit temporal correlations and inter-channel 

correlations.  

We can express the multi-channel data acquisition 

problem as follows: 

,i i iy R x i        (1) 

It can be arranged as: 

( ) ( )vec Y Rvec X        (2) 

where  1 | ... | CY y y ,  1 | ... | CX x x and R is the block 

diagonal matrix with Ri’s along diagonals. The ‘vec’ has 

the usual connotation. 

The task is to recover X. The columns of X are the 

EEG signals for each channel and the rows are the EEG 

samples of each instant across all the channels. In this 

work, we propose to jointly exploit the sparsity of X along 

the columns and rows by applying a 2D Fourier 

transform. The Fourier basis is maximally incoherent with 

the Dirac basis and hence is a suitable choice for 

sparsiying the signal. However, a 1D Fourier transform 

along the columns of X does not yield a very sparse 

representation as it does not account for inter-chanel 

correlations. But the 2D Fourier transform, accounts for 

correlation across the channels and yields a very sparse 

representation. This is evident from Fig. 3.  

 
Fig. 3. Decay of 1D vs 2D Fourier Coefficients for EEG 

signal ensemble 

 

Mathematically the operation is expressed as

2 ( )C R DF XF F vec X    will be sparse; FC and FR are 1D 

Fourier transforms operating on the columns and the rows 

respectively and F2D represents the 2D Fourier transform.  
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One can recover the signal by exploiting the 

transform domain sparsity via l1-norm minimization.  
2

22 1
min ( ) ( ) ( )D

X
vec Y Rvec X F vec X    (3) 

3.2. Combining Sparsity with Rank Deficiency 

In [5, 6] it was argued that since the EEG signals 

from multiple channels are correlated with each other the 

columns of X are not independent. Therefore it is possible 

to recover X from the partially sampled entries Y by 

exploiting its rank-deficiency. Basically, it turns out to be 

a low-rank matrix completion problem which can be 

recovered by: 
2

2 *
min ( ) ( )

X
vec Y Rvec X X     (4) 

In this work, we propose to combine sparse recovery 

(3) and low-rank recovery (4). In the past, studies in 

dynamic MRI reconstruction [8-11] showed that better 

recovery results can be obtained when sparsity based 

techniques are combined with low-rank recovery 

techniques. Our work is motivated by these studies. We 

expect similar improvements over [5, 6]. The 

optimization problem that needs to be solved is: 
2

1 2 22 1 *
min ( ) ( ) ( )D

X
vec Y Rvec X F vec X X      (5) 

The algorithm for solving (5) is derived based on the Split 

Bregman approach. 

3.3. Algorithm Derivation 

The task is to solve an optimization problem of the 

following form. We change the notations for the sake of 

convenience.  
2

1 22 1 *
min

X
y Ax Dx X       (6) 

We solve (6) by Bregman type variable splitting with 

Alternating Directions Method of Multipliers (ADMM) 

[12]. We introduce two proxy variables - p=vec(P) and 

q=vec(Q) for the two penalty functions respectively. We 

add terms relaxing the equality constraints of each 

quantity and its proxy, and in order to enforce equality at 

convergence, we introduce Bregman relaxation variables 

B1 and B2. The new objective function is: 
2

1 22 1 *, ,

2 2

1 1 2 2

min

      

X P Q

F F

y Ax Dp Q

P X B Q X B

 

 

   

    

   (7) 

This allows the problem (7) to be split into an 

alternating minimization of the following (easier) 

subproblems: 
2 2 2

1 1 2 22
min

F FX
y Ax P X B Q X B         (8) 

2

1 1 11
min +

FP
Dp P X B       (9) 

2

2 2 2*
min

FQ
Q Q X B       (10) 

The subproblem (8) is easy to solve; it is just a least 

squares minimization problem that can be solved 

efficiently using any conjugate gradient algorithm. The 

subproblem (9) is an analysis prior denoising problem. 

The technique to solve this is borrowed from [13]: 

1 11
1

1

( ) ( ( ( ) ))Tz cI cz D vec X B D z




         

1( ) Tp vec X B D z     

where 1
1(|  ( ) | )diag D vec X B    and c is the 

maximum eigenvalue of D
T
D. 

The subproblem (10) is a nuclear norm minimization. 

The algorithm to solve this was derived in [14]. The 

method is called singular value shrinkage. 

2

TUSV X B        

2 2( , / )Soft S        

TQ U V   

Soft-thresholding is applied on the singular values of the 

matrix X+B2; Q is updated by recomposing the matrix 

using the singular vectors and the thresholded singular 

values. 

This concludes the derivation for solving (6). 

4. EXPERIMENTAL EVALUATION 

We compare our method with two CS based recovery 

techniques - sparse recovery [3] and BSBL recovery [4]. 

We also compare our method with the low-rank recovery 

technique proposed in [5, 6].  

The experiments are carried out on the EEGLab 

Dataset [16]. We tested the recovery results for two 

different sub-sampling / compression ratios - 50% (2:1) 

and 25% (4:1). The term 'sub-sampling ratio' pertains to 

our proposed method and the low-rank technique. Prior 

CS studies do not sub-sample in the time. These methods 

[3, 4] sample the full signal and then compress it, hence 

the term 'compression ratio'.  

Our algorithm required specification of λ1 and λ2. To 

find λ1, we put λ2=0, and find λ1 by the L-curve method 

[15]. For this value of λ1, we find the value of λ2 by the L-

curve method. Using this technique we found that λ1=1 

and λ2=10
-2

 yields the best results. 

The metric used for evaluation is the Normalized 

Mean Squared Error defined as 

2

2

original reconstructed
NMSE

original


  . NMSE and its 

close counterpart SNR are standard metrics used for 

quantitative reconstruction performance [3-6]. The 

reconstruction results are shown in Table 1. For each 

signal ensemble and for each configuration, the random 

sampling matrix (for our proposed method and low-rank 

method [5])  and the compression matrix (for [3, 4]) have 

been simulated 100 times. The mean and standard 

deviations (of NMSE's) for all the EEG signals in the 

dataset are reported. 
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Table 1. Comparative Reconstruction Results (NMSE) on 

EEGLab 
Method Compression Ratio 

2:1 (mean, std) 4:1 (mean, std) 

BSBL [4] 0.080, ±0.046 0.178, ±0.148 

Sparse 

Reconstruction [3] 

0.160, ±0.084 0.328, ±0.186 

Proposed Sparse 0.072, ±0.032 0.166, ±0.102 

Low-rank [5] 0.084, ±0.044 0.186, ±0.088 

Proposed Combined 0.060, ±0.028 0.154, ±0.056 

 

Our proposed method yields better reconstruction 

results than all previously known techniques [3-6] for 

both 2:1 and 4:1 under-sampling. For qualitative results 

we show sections of original and reconstructed EEG 

signal in Fig. 4. These signals correspond to a sampling / 

compression ratio of 2:1.  

 

 

 

 
Fig. 7. Overlayed Original and Reconstructed Signals 

from Different Techniques - (Top to Bottom) BSBL, 

Proposed Sparse Low Rank and Proposed Combined 

reconstructed signals.  

 

From Fig. 4. it can be seen that BSBL and Low-rank 

recoveryy yields significant artifacts. The reconstruction 

artifacts are less pronounced in our Sparse Recovery 

technique. But the artifacts virtualy vanish in our 

proposed combined (low-rank and sparse) method. The 

reconstructed and the original signals are almost 

indistinguishable. 

Our proposed method yields reconstruction results 

which are better than state-of-the-art techniques. But the 

main advantage of our method is that, we achieve this 

reconstruction accuracy from partially sampled EEG 

signals thereby saving on sensing and data processing 

energy consumption. 

5. CONCLUSION 

In this work the task is to reconstruct the signal from its 

sub-sampled measurements. This helps in reducing – a) 

the power consumption at the sensor nodes, and b) 

reducing complexity of the digital front-end.  

Previously matrix completion techniques were 

applied to solve the recovery problem [5, 6]. However, in 

this work we proposed an alternative approach. First, we 

showed that the multi-channel signal ensemble has a 

sparse representation in the 2D Fourier domain; therefore 

it is possible to apply compressed sensing based 

techniques for reconstruction. But we do not stop here, we 

show that even better recovery is achieved when sparsity 

and low-rank recovery is combined.  

The reconstruction results from our proposed method 

is compared with state-of-the-art techniques in CS based 

and low-rank recovery based EEG signal reconstruction. 

Reconstruction results from our method is considerably 

better than the ones we compared against.  
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