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ABSTRACT

Directed information, an information theoretic quantity, is de-
veloped in this paper to infer the causal connectivity from
electrocorticography (ECoG) recordings of an epileptic pa-
tient. The causal connectivity can be used to infer the opti-
mal electrodes for electrical stimulation based treatments of
epilepsy. A parametric estimator for directed information be-
tween two ECoG signals is also proposed. The estimator es-
timates entropy and causally conditioned entropy and their
difference is the estimate of DI. The estimator is then applied
to ECoG data recorded from the electrodes in the epilepto-
genic zone (EZ) in two patients with focal epilepsy to learn
the changes in causal connectivity during seizures.

Index Terms— Directed information, epilepsy, causal
connectivity, ECoG, entropy

1. INTRODUCTION

Epilepsy is a common neurological disease affecting about
three million patients in the United States alone. Buoyed by
the success of electrical stimulation in treating movement dis-
orders like Parkinson’s disease, neuromodulation via electri-
cal stimulation is considered a promising approach to treat
epilepsy in patients where current treatment options are not
effective [1]. Learning the location of optimal spatial loca-
tions for stimulation is a major challenge in this endeavour
[2, 3]. Our conjecture is that these locations can be inferred
from the changes in causal connectivity during seizures. This
paper focusses on developing novel techniques to learn the
causal connectivity in the epileptogenic zone (EZ). The EZ is
defined as the minimum area of the brain that must be resected
during surgery to achieve seizure freedom [4].

We develop directed information (DI), an information the-
oretic quantity, to infer the causal connectivity between the
discrete-time, continuous-valued signals recorded at differ-
ent electrocorticographic (ECoG) electrodes implanted in the
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brain of an epileptic patient in this paper. Directed informa-
tion was first introduced in [5] and was further developed for
discrete-time, discrete-valued time-series in [6, 7] and was
also used to quantify the capacity of wireless channels with
feedback [8]. DI between two time-series is the amount of
uncertainty in one time-series causally explained by the other
time-series [9]. DI is also successfully used in many other
applications - gene networks, portfolio theory and hypothesis
testing, to name a few [10–12].

Causal connectivity is inferred predominantly using tech-
niques based on Granger causality [13–15] and more recently
using techniques based on transfer entropy [16] and dynamic
causal modeling [17,18]. The main contribution of this paper
is developing a novel quantitative technique to infer the causal
connectivity from ECoG by broadening the definition of di-
rected information to the class of discrete-time, continuous-
valued processes like ECoG recordings. This ensures that DI
is a very broad concept applicable to a large class of electro-
physiological measurements from the brain - from spike trains
[9] to ECoG data. This is the main adavantage of DI over
other techniques based on Granger causality [13,16,19,20] to
estimate causal connectivity. In addition, we propose a para-
metric estimator to estimate the DI from one ECoG signal to
another. The proposed estimator first estimates entropy and
causally conditioned entropy from ECoG signals and their
difference is the estimate of directed information. The esti-
mator is validated on simulated time-series. The proposed DI
estimator is applied to ECoG data to infer causal connectivity
in the EZ of two patients with focal epilepsy. The results of
our analysis show that optimal spatial locations for electrical
stimulation can be identified in two steps - first use entropy
estimates to select a small group of electrodes and then use
estimated DI between them to isolate the spatial locations that
are drivers of epileptic activity.

The outline of the rest of the paper is as follows. Sec-
tion 2 defines DI and proposes a parametric estimator for
DI between two time-series. The performance of the pro-
posed estimator is characterized in section 3. In section 4, the
causal connectivity is inferred using DI from ECoG record-
ings. Concluding remarks are given in section 5.
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2. DIRECTED INFORMATION

Consider the recordings from a ECoG electrode array with
multiple channels. The causal influence between two chan-
nels is quantified by directed information between them.
In this paper, we solve the problem of estimating DI be-
tween all pairs of channels to learn the causal connec-
tivity between them. Let XN = (x1, x2, · · · , xN )

T and
YN = (y1, y2, · · · , yN )

T denote recordings from two elec-
trodes (or channels) of the ECoG array. HereN is the number
of samples recorded from each electrode. The ECoG data
used in this paper is collected from 154 electrodes at a sam-
pling rate of 1 KHz. For notational convenience the variables
with non-positive subscripts are empty sets and the subscripts
are not shown when equal to 1. The following sections de-
fine DI and provide an estimator of DI between two ECoG
signals.

2.1. DI definition

The DI from N samples of time-series X to N samples of
time-series Y, denoted by I

(
XN → YN

)
, is defined as

I
(
XN → YN

)
= h

(
YN

)
− h

(
YN‖XN

)
, (1)

where h
(
YN

)
and h

(
YN‖XN

)
are respectively the differ-

ential entropy [21] of the N dimensional continuous random
vector YN and the causally conditioned differential entropy
of YN , causally conditioned on XN . The causally condi-
tioned differential entropy is defined as

h
(
YN‖XN

)
=

N∑
n=1

h
(
yn|Yn−1,Xn

)
. (2)

The definitions of DI and causally conditioned differential en-
tropy in (1) and (2) are obtained by broadening the definitions
of the same quantities from discrete-time, discrete-valued ran-
dom processes [6, 7] to discrete-time, continuous-valued pro-
cesses. One of the main differences between discrete-valued
and continuous-valued random processes is that the entropy
of a discrete-valued process is always non-negative, whereas
the differential entropy of a continuous-valued process can be
negative [21]. However DI is always non-negative since con-
ditioning cannot increase differential entropy [21], i.e., 0 ≤
I
(
XN → YN

)
. Directed information, unlike other causal-

ity metrics like Granger causality, can be interpreted as the
number of bits of uncertainty in one process that is causally
explained away by the other process. If I

(
XN → YN

)
= 0,

then there is no causal influence from X to Y. Now, the DI
between the time-series X and Y is defined as

I
(
X→ Y

)
= lim

N→∞

1
N I
(
XN → YN

)
= lim

N→∞

1
N h
(
YN

)
− lim

N→∞

1
N h
(
YN‖XN

)
= h

(
Y
)
− h
(
Y‖X

)
, (3)

provided the limits exist. In (3), h (Y) and h (Y‖X) are re-
spectively the differential entropy of Y and the causally con-
ditioned differential entropy of Y given X. The DI from Y
to X is also similarly defined. Note that the DI is not a sym-
metric metric, i.e., I

(
XN → YN

)
6= I

(
YN → XN

)
.

2.2. DI Estimator

Let us focus on estimating I (X→ Y). The estimator as-
sumes the time-series X and Y are stationary, ergodic and
Markovian in the observed time-window. These are reason-
able assumptions to model ECoG data [13, 15, 22]. An im-
plicit assumption in the problem of estimating the causal con-
nectivity is that the true causal connectivity does not vary in
the ECoG recording window, which is mathematically cap-
tured by stationarity. Ergodicity is required to ensure that the
estimates from long enough recording windows converge to
the true value. Finally, the Markovian assumption only for-
malizes the duration of the past activity that influences the
current activity at different electrodes and does not explic-
itly model the dependence. Let the current sample of the
time-series Y depend on the past J and past K samples of
the time-series Y and X respectively. Also P

(
YN‖XN

)
=

N∏
n=1

log P
(
yn|Yn−1

n−J ,X
n
n−K+1

)
denotes the causal likelihood

of the N samples of Y, conditioned on the causal past of Y
and X. In addition, let us focus on the distributions for which
the differential entropy exists. Under these assumptions, an
estimator for the causally conditioned entropy of Y given X
is:

ĥ (Y‖X) = 1
N

N∑
n=1

(
− log P

(
yn|Yn−1

n−J ,X
n
n−(K−1)

))
. (4)

An estimator for ĥ (Y) can be easily obtained by settingK =
0 in (4). The estimators proposed here are inspired by the
ideas from [9,21]. We propose the following estimator for DI
from time-series X to Y:

Î (X→ Y) = ĥ (Y)− ĥ (Y‖X) . (5)

The performance of this estimator is tested on simulated time-
series in the following section and applied to real ECoG data
in the subsequent section.

3. PERFORMANCE ON SIMULATED DATA

The accuracy of DI estimator proposed in the earlier section
is characterized using data simulated from a multivariate au-
toregressive (MVAR) model. Consider N samples of two in-
dependent time-series XN and ZN , where the xn, zn are i.i.d.
zero mean Gaussian with variances σ2

x and σ2
z respectively.

Without loss of generality, let σ2
x = 1. The time-series Y is

generated according to the following MVAR model:

yn = β1xn + β2xn−1 + zn, n = 1, 2, · · · , N. (6)
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Fig. 1. A 75 second snapshot
of ECoG recordings from six
channels of patient P1.
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Fig. 2. Empirical PDFs of entropy (curves without circles) and
causal conditional entropy (curves with circles) estimates from
three segments - before seizure, during seizure and after seizure.
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Fig. 3. CDFs of DI estimates of
patient P1 from a segment be-
fore, during and after a seizure.

Let us first look at the true value of DI in both directions
for the model given by (6). When β1 = 1, β2 = 0, (6) reduces
to yn = xn + zn, and it is obvious that both X and Y have
equal causal information about each other. It is easy to see
that I (X→ Y) = I (Y → X) = I (X;Y) = C, where
I (X;Y) is the mutual information between X and Y and
C = 1

2 log
(
1+ 1

σ2
z

)
. The other extreme case of β1 = 0, β2 =

1 is also interesting and (6) reduces to yn = xn−1 + zn. In
this case, X has causal information about Y, while Y has no
causal information about X. More precisely, I (X→ Y) =
I (X;Y) = C and I (Y → X) = 0. For the remaining case
of non-zero β1, β2, the analytical expressions for DI are:

I
(
X→ Y

)
=

1

2
log

(
|β1β2|
σ2
z

)
+
1

2
cosh−1

(
β2
1 + β2

2 + σ2
z

2|β1β2|

)
,

I
(
Y → X

)
=

1

2
log

(
1 +

β2
1

σ2
z

)
. (7)

The derivation of (7) uses tridiagonal matrix determinant from
[23] and is omitted due to limited space. Note that from (7),
DI from Y to X does not depend on β2. This is because the
uncertainty in the current sample of X does not depend on β2,
when causally conditioned on the past of X and Y.

Now using the estimator in (5), DI is estimated from 105

samples of the two time-series X and Y, generated with unit
variances from (6). The parameters, β1, β2, σ2

z , are estimated
from data. Let us focus on estimating Î (X→ Y). Estimat-
ing Î (X→ Y) using (5) requires estimating the causal con-
ditional entropy of time-series Y given X and the entropy of
Y. The causal conditional entropy can be estimated using (4)
and it requires estimating the distribution of samples on Y,
conditioned on the past of Y and X. This distribution is Gaus-
sian from (6). The parameters of this distribution β1, β2, σ2

z ,
along with the model orders are estimated using maximum-
likelihood (ML) estimation with minimum description length
(MDL) penalty [9, 24]. ĥ (Y‖X) is obtained by substituting
the parameters in (4). Entropy of Y is estimated using similar
procedure. The resultant estimates are substituted into (5) to
find Î (X→ Y). Î (Y → X) can be estimated similarly.

The accuracy of the DI estimator is evaluated by the nor-

malized root mean-square error (NRMSE) between the true
value from (7) and the estimate from (5) for 100 different val-
ues of the ordered pair (β1, β2), where 0 ≤ β1, β2 ≤ 1. The
NRMSE between the estimate and the true value is 0.29% for
DI from X to Y. The NRMSE after a similar analysis for
DI from Y to X is 0.61%. This validates the accuracy of the
proposed DI estimator.

4. CAUSAL CONNECTIVITY FROM ECOG DATA

Directed information is now applied to infer the causal con-
nectivity from the ECoG recordings of two patients with fo-
cal epilepsy under the treatment of our coauthors. We ana-
lyzed multiple recordings from both patients, recorded when
the patients are awake, asleep and are having a seizure. Here
we present the results from a connectivity analysis restricted
to the 25 electrodes in epileptogenic zone (EZ) in these pa-
tients, due to pragmatic space constraints. The journal ver-
sion of this article to be submitted soon will have more re-
sults. The epileptogenic zone (EZ) of the patient P1 was
localized to the right amygdala (RAMY), right anterior and
posterior hippocampus (RAH and RPH respectively), based
on typical clinical criterion for localizing seizure onsets. The
EZ of the patient P2 was localized to the left anterior and
posterior hippocampus (LAH and LPH respectively). Each
seizure record (approximately 10 minutes long) is divided
into multiple overlapping segments of varying duration (be-
tween 30 and 100 seconds). A snapshot of ECoG record-
ings in six channels from patient P1 is plotted in Fig. 1. The
ECoG signals in each segment are modeled using MVAR pro-
cesses. The parameters of the MVAR model, namely, the
model orders, auto-regressive parameters and the noise vari-
ances are estimated using ML with MDL penalty, as described
in section 3. After some trial and error, we restricted the
search space for the optimal MVAR process model orders to
[75, 125] to reduce the complexity of the parameter estima-
tion. A down sampling factor of 10 (i.e. every 10th sample
is used from the past) is used to model the past dependence.
Once all the parameters are estimated, DI from one ECoG
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Fig. 4. Causal connectivity in the epileptogenic zone of patient P1 from three segments - one before seizure, one during seizure
and one after seizure. Twenty five electrodes, identified by the label inside each circle, are chosen in the epileptogenic zone.

channel to another is the difference between the estimates of
the entropy and causal conditional entropy. The estimation
algorithm is described in section 2.2. This process is repeated
for every pair of ECoG channels to learn the causal connec-
tivity graphs during seizures in both these patients. The prop-
erties of the entropy and DI estimates from our analysis of six
seizure records, three from each patient, are presented in the
remainder of this section.

To begin with, let us focus on the entropy estimates of
25 channels from a segment. The distribution of entropy val-
ues of the ECoG channels changes within a seizure record.
Fig. 2a, 2b plot the empirical probability density function
(PDF) of the estimates of entropy and the causal conditional
entropy in three different segments within a seizure record
from patient P1 and P2 respectively. The dashed line, solid
line, dash-dot lines in both these figures correspond to the
PDF estimates from a segment before seizure, during seizure
and after seizure respectively. The curves with circles corre-
spond to the PDF of the causal conditional entropy and with-
out circles correspond to entropy. It is clear from both these
figures that entropy increases during a seizure and falls back
down after the seizure. This is expected, since the abnormal
excessive activity in the brain during seizures leads to increase
in variance of the signals leading to more entropy. Also the
peak of the entropy distribution after a seizure is slightly to
the left of entropy distribution before seizures, indicating that
activity returns to almost normal levels immediately after a
seizure. Estimated causal conditional entropy between 600
directed links present between 25 ECoG electrodes is used
to calculate its empirical PDF. As expected, the PDFs of the
causal conditional entropy are left-shifted with respect to the
entropy PDF from the same segment, since causal conditional
entropy is less than entropy. Directed information is estimated
by subtracting the causal conditional entropy from entropy.

Fig. 3 plots the CDF of the estimated DI in three segments,
before a seizure, during a seizure and after a seizure, recorded
from 25 electrodes in the EZ of patient P1. The inferred
causal connectivity graphs in these three segments are plotted

in Fig. 4. The seizure record from which the three segments in
Fig. 3, 4 are selected is different from the one in Fig. 2a. Each
electrode is represented by a circle with its name in these fig-
ures. Due to limited space, we are not presenting the results
from a similar analysis done for other seizure recordings of
patients P1 and P2. Only those connections whose DI es-
timate exceeds a threshold are depicted in the connectivity
graphs in Fig. 4. The threshold is patient-specific and is equal
to the DI value corresponding to the cumulative distribution
function (CDF) of 0.9 over all the segments analyzed. For
the connectivity graphs in Fig. 4, the threshold is 0.4 and it is
depicted by a vertical black line in Fig. 3. From Fig. 3, it is
clear that the number of DI estimates exceeding the threshold
are more in the segment after seizure when compared with
the other two segments. This explains the increase in num-
ber of causal connections after a seizure when compared with
segments before and during a seizure observed in Fig. 4. The
analysis presented here can be further extended to learn the
optimal spatial locations for electrical stimulation. Increase
in entropy during seizures can be used as feature to first select
a subset of electrodes from 154 electrodes. The causal con-
nectivity between these subset of electrodes can be further an-
alyzed to narrow down and identify the electrodes responsible
for sustaining the seizure network.

5. CONCLUSIONS

In this paper, we develop directed information to infer and
present the causal connectivity in the EZ from the ECoG
recordings of two patients with focal epilepsy. Our analysis
showed that entropy increases during seizure and this can be
used as a feature to select a small group of electrodes. Causal
connectivity between these electrodes can then be further
analyzed to identify the electrodes driving the seizure activ-
ity. These electrodes could potentially be the optimal spatial
locations for electrical stimulation. This should be confirmed
by analyzing a larger patient cohort in future work.
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