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ABSTRACT

In this paper we demonstrate by simulation, that the spike features
apparent in low-impedance deep brain stimulation (DBS) targeting
microelectrode recordings (MER) may not reflect the action poten-
tials of individual neurons. Rather, they are more likely tobe com-
pound action potentials from a synchronized group of neurons lo-
cal to the electrode. Initially we simulate the MER by combin-
ing the electric fields from a large number of independent neurons
surrounding the microelectrode tip. When synchronizationis intro-
duced amongst neurons the resulting discernible spikes in an MER
are far more likely to relate to compound action potentials from sub-
sets of synchronized neurons than individual action potentials. Dif-
ferent sub-sets of neurons are then synchronized to see how well a
conventional spike sorting algorithm can differentiate the compound
action potentials from different groups of neurons. These simula-
tions offer insight into the clinical interpretation of DBSMERs used
to target deep brain structures.

Index Terms— MER, DBS, point process, synchronization

1. INTRODUCTION

During the treatment of Parkinson’s Disease with deep brainstimu-
lation (DBS) a microelectrode is used to confirm the target location,
e.g. the Subthalamic Nucleus (STN), in the brain. This electrode
is used to both stimulate and record neuronal activity. A design
consequence of using the recording electrode for stimulation is that
it has a50µm tip to increase the volume of stimulation and to pre-
vent neuronal damage by minimizing the current density around the
electrode tip. A typical MER consists of a baseline noise component
and features, larger in amplitude than the noise, often referred to
as spikes. These spikes are commonly interpreted as action poten-
tials (APs) from single neurons [1, 2, 3, 4]. Characteristics of the
microelectrode recording (MER), such as an increase in the noise
amplitude when entering the STN, are used by the surgical team to
locate the target for stimulation [5, 6].

Previous work has modeled how an increase in MER noise can
be attributed to neural structure, showing that the electric field from
a large number of neurons, up to 10,000 neurons, can contribute to
the recording [7, 8]. In these models each neuron is simulated as a
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filtered point process with independent identically distributed inter-
spike interval (ISI) times. As these neurons are also modelled in-
dependent from one another, there is no synchronous activity, other
than by chance. These models are not representative of the STN.
Studies have shown that there can be up to 25% of cells are involved
in synchronous activity in the STN [5].
In this paper we demonstrate that synchronization of neuronal fir-
ing times can produce spikes in an MER known as compound ac-
tion potentials (CAPs). This paper has the following structure: The
methods section describes how synchronization is added to the simu-
lation. The results section details the properties of thesespikes under
different conditions. The discussion section is focused onthe anal-
ysis of two different synchronization mechanisms, their plausibility
and the implication of these results to spike sorting of MERsfrom
DBS. The final section summarizes the conclusions of this study.

2. METHODS

The model used in this paper is an extension of the work presented
in [7, 8]. For each neuron the ISI times are drawn from the same
Weibull distribution, with a shape parameter of0.8 and a mean
firing rate of10Hz. These parameters match the values found for
a STN given in [8]. A subset of synchronized neurons are defined
at random during the initialization of the simulation. An additional
point process time series is generated, using a Poisson distribution
for ISI of synchronized firing running in parallel. A Poissondistri-
bution is chosen so that the synchronized events are independent and
evenly distributed in time (it is not biologically based). At the spike
times of this second point process a spike is added to the subset of
neurons selected to be synchronized. If a neuron fires as partof a
synchronized subset, the next firing time is reset and redrawn from
the single neuron ISI distribution. The neuronal spike trains pro-
duced are coupled to the modeled electrode using the extracellular
filtering model in [8].

In order to generate another synchronized neural sub-set the
same process can be used, with a different group of neurons selected
and a separate probability distribution for synchronized timing
events generated. Neurons that synchronize in one group canstill
synchronize in another group. For spatial localization of groups, the
neurons are selected using a Gaussian distribution in spacecentered
on the group with a standard deviation based on the spatial spread of
the desired group as shown in Figure 2.

The signal to noise ratio (SNR) of the spikes is calculated bytak-
ing the average maximum peak amplitude for a spike and comparing
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Fig. 1. Raster plot of the simulated neuron firing times and the MER time series. The vertical lines of increased density in the raster plot
correspond to the synchronized firing events, with a fraction of 0.15 synchronization. There are two synchronized subsets of neurons, giving
two different spike shapes/amplitudes.

Fig. 2. Comparison of the probability of a neuron belonging to a
synchronized subset for uniform distributed and spatiallylocalized
selections. The three coloured lines represent three different syn-
chronized subsets (above the graph uniformly distributed and below
spatially localized).

it to the root mean square (RMS) voltage of the noise (shown in
Figure 1). Spike sorting of the recordings is performed using Osort
[9], with compact support bi-orthogonal ‘1.5’ wavelet at individual
wavelet scales corresponding to between 0.1 and 1ms. The clus-
tering is unsupervised, with cluster validity checked by comparing

spike timing to the synchronized times in the simulation.

3. RESULTS

A raster plot, Figure 1, of the simulated neuron firings showshow
the synchronized firing times correspond to a spike with a large
signal to noise ratio. In the raster plot two separate synchronized
subsets can be seen. Although there are two subsets with the same
percentage of total neurons synchronized, their spatial arrangement
around the electrode are different. The effects of this spatial arrange-
ment can be seen in the MER time series, where two different spike
shapes are present.

As the number of neurons that are synchronized increases Fig-
ure 3 shows a linear increase of the mean peak amplitude of the
CAP spike, averaged over 20 simulations. The variance of the
peak amplitude also increases significantly, depending on the spatial
distribution of the sub-set of synchronized neurons, i.e. as more
neurons are synchronized they are more likely to come from a
wide spread of locations. Figure 3 shows synchronization over the
biologically plausible range of 0-0.30 for the STN [5]. For syn-
chronization above 0.5 the mean peak signal amplitude becomes
constant at8.06± 0.52mV , with variance decreasing to zero when
all neurons are synchronized.

Figure 3 shows when two sub-sets of synchronized neurons
differ substantially in their spatial distribution, spikesorting can be
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Fig. 3. Mean peak signal amplitude as the fraction of neurons in the
synchronized sub-set changes. The mean is taken over 20 simula-
tions and the error bars are one standard deviation. The dashed line
represents the average RMS value of the recordings, shown inFigure
1.

successfully achieved. This occurs more often when the neurons are
spatially localized, however it can occur when the two sub-sets are
uniformly distributed as per Figure 2.
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Fig. 4. Comparison of two CAPs after spike sorting from a simula-
tion with synchronization percentage of 25% total synchronization.
For this simulation there were two synchronized subsets of neurons
with each subset uniformly distributed across all the neurons and
12.5% of neurons in each set.

Figure 5 shows that when the synchronization of six neural sub-
sets is changed from uniform across space, to spatially localized, the
spike sorting algorithm can distinguish more clusters. Forthe uni-
form distribution only two to three clusters are found 50% ofthe
time. For the spatially localized neural subsets more than four clus-
ters are found 75% of the time.

4. DISCUSSION

Figure 3 shows that for no synchronization there is a chance of
having a peak signal amplitude two times above the RMS noise.In
this case a neuron current source (the axon hillock) is located close

Fig. 5. The number of groups clustered for six spatially localizedand
six uniformly distributed subsets of synchronized groups of neurons
over 100 simulations. The sticks represent the maximum and the
minimum number of groups, the box represents the 25th and 75th
percentile and the notch is the mean.

enough to the electrode tip for its action potential to be significantly
larger than the background noise and thus appear as a spike. This
shows that it is possible for DBS MER spikes to represent single
neuron activity. However, the likelihood of two or more neurons
contributing AP spikes in these MER simulations is very low be-
cause of their spatial distribution.

There are two methods to produce visible spikes in the MER
simulations. The first method is to place a neuron very close to
the electrode (where the current source is adjacent to the tip of the
electrode). The second method is to introduce synchronization and
produce a CAP. For DBS MERs the spikes are often thought to be
APs produced by single neurons. Spike sorting techniques, based
on shape, amplitude and rate, are then used to determine if the MER
spikes all correspond to the same neuron, or multiple neurons firing
at different times [9]. It can be seen that these spike sorting methods
can also be used to sort CAP spikes generated by synchronization,
depending on the spatial distribution of the synchronization within
the STN.

When synchronization was uniformly spread through the STN
the spike sorting of different synchronized subsets failedto produce
the correct number of clusters. This is due to the effective shape of
the CAP produced by a subset of synchronized neurons being too
similar. Their similarity in shape of the spike is an averageeffect of
the action potentials from each neuron that is synchronized. As the
distribution of the synchronized subsets has a uniform probability
of selecting any neuron, the average spike shape for each subset is
on average the same. In general the CAP shape is dominated by the
closest neurons to the electrode, with minimal extracellular filtering.
On average neurons that are further away are more likely to bese-
lected because the number of neurons located at a particulardistance
depends on the square of the radial distance from the electrode,r2.
However, the further the neuron is from the electrode, the more the
electric field is filtered by the extracellular medium [7, 8, 10, 11],
with an amplitude decay larger than1/r2. Therefore, the main
difference between the two CAPs produced by a subset of synchro-
nized neurons will be the total number of closer neurons, which will
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change the amplitude of the spike, as seen in the example in Figure 4.

When the synchronized subsets are defined to be spatially lo-
calized, rather than across all of the STN, the compound action
potentials are no longer dominated by the closest neurons. Rather
they reflect the average AP at the mean spatial location of thecluster.
This increases the success of the spike sorting because eachCAP
not only differs in amplitude but also in shape due to extracellular
filtering.

A point to note from Figure 5 is that the spike sorting never over-
estimates the number of synchronized subsets. The low likelihood
of two neurons producing AP spikes in the recording combinedwith
this point would suggest that spatially localized synchronization is
the most likely explanation for a DBS MER when the spikes can be
sorted into multiple clusters. A limitation of this model isthat the
peak amplitude for a single neuron AP is limited in size to themin-
imum distance a neuron can be generated at. In practice thereis no
limit to the neuron-electrode distance, meaning that peak amplitude
cannot be used to differentiate between spikes from CAPs andvery
close APs.

Simultaneous MERs can not be obtained in a target structure
during a DBS surgery. The exact location of neurons around the elec-
trode is also currently unmeasurable. These limitations, along with
the spike mechanisms presented in this paper, mean that it would
be unlikely to differentiate between APs, a single synchronous
neuronal subset and multiple uniformly distributed synchronous
neuronal subsets. Due to this complication, DBS MER spikes are
most sensibly considered as an indication of the target structures
overall activity. If the spikes can be sorted into multiple clusters, it
indicates that there is most likely spatially localized synchronized
neuronal subsets. Alternitively, the spikes can be sorted into a single
group to obtain a measure of overall activity.

The method used for adding the synchronization uniformly in
this paper is artificial and not based on a biological mechanism.
This was chosen only to demonstrate that with synchronization,
sortable spikes can emerge from the CAPs in MERs. The model was
extended to include spatially localized synchronization to improve
biological plausibility and making the CAPs differ in amplitude and
shape. This distribution relates to the idea of somatotropic maps of
the STN, which show that there is localized organization in the STN
related to different movement tasks [5].

Future work will focus on increasing the biological plausibil-
ity of this model, structures external to the STN, such as theentire
Basal Ganglia, can be included. These external structures can be
used to control the amount of synchronization, and the statistics of
the synchronized spikes. Controlling the ISI times using anexter-
nal structure allows for non-stationary ISI statistics, which could be
used to analyze MERs when patients are performing transienttasks.

5. CONCLUSIONS

This work shows that synchronized firing between different neurons
located near a microelectrode can produce what appears to bea sin-
gle neuron action potential, but is actually more likely to be a com-
pound action potential. As the number of synchronized neurons,
within a biologically plausible range, increases the signal to noise ra-
tio for these spikes increases. Standard spike sorting methods cannot
appropriately cluster spikes which occur when the neuronalsynchro-

nization is uniformly distributed. The spike sorting methods perform
better when the synchronized groups are spatially localized.
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