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ABSTRACT filtered point process with independent identically disited inter-
spike interval (ISI) times. As these neurons are also medeh-

In this paper we demonstrate by simulation, that the spiktufes  dependent from one another, there is no synchronous gctititer
apparent in low-impedance deep brain stimulation (DBS)eting  than by chance. These models are not representative of tNe ST
microelectrode recordings (MER) may not reflect the actiotep-  Studies have shown that there can be up to 25% of cells ark@u/o
tials of individual neurons. Rather, they are more likelyoeocom-  in synchronous activity in the STN [5].
pound action potentials from a synchronized group of nesiton  In this paper we demonstrate that synchronization of nerfin
cal to the electrode. Initially we simulate the MER by combin ing times can produce spikes in an MER known as compound ac-
ing the electric fields from a large number of independentare  tion potentials (CAPSs). This paper has the following stet The
surrounding the microelectrode tip. When synchronizaigimtro-  methods section describes how synchronization is addée imu-
duced amongst neurons the resulting discernible spikes MER  lation. The results section details the properties of tepgess under
are far more likely to relate to compound action potentigdgifsub-  different conditions. The discussion section is focusedhenanal-
sets of synchronized neurons than individual action p@isntDif-  ysis of two different synchronization mechanisms, theaugibility
ferent sub-sets of neurons are then synchronized to see ktivaw and the implication of these results to spike sorting of MERm
conventional spike sorting algorithm can differentiate tompound  DBS. The final section summarizes the conclusions of thidystu
action potentials from different groups of neurons. Thesauk-
tions offer insight into the clinical interpretation of DB#ERSs used > METHODS
to target deep brain structures.

Index Terms— MER, DBS, point process, synchronization The model used in this paper is an extension of the work pteden
in [7, 8]. For each neuron the ISI times are drawn from the same
Weibull distribution, with a shape parameter @8 and a mean
1. INTRODUCTION firing rate of L0H z. These parameters match the values found for
a STN given in [8]. A subset of synchronized neurons are define
During the treatment of Parkinson’s Disease with deep kstimu-  at random during the initialization of the simulation. Andétébnal
lation (DBS) a microelectrode is used to confirm the targeafion,  point process time series is generated, using a Poissaibdi&in
e.g. the Subthalamic Nucleus (STN), in the brain. This ebeig  for ISI of synchronized firing running in parallel. A Poissdistri-
is used to both stimulate and record neuronal activity. Aigies bution is chosen so that the synchronized events are indepeand
consequence of using the recording electrode for stinmiasi that  evenly distributed in time (it is not biologically based)t the spike
it has a50um tip to increase the volume of stimulation and to pre- times of this second point process a spike is added to theesabs
vent neuronal damage by minimizing the current densityradidhe  neurons selected to be synchronized. If a neuron fires aspart
electrode tip. A typical MER consists of a baseline noisegonent  synchronized subset, the next firing time is reset and reufeom
and features, larger in amplitude than the noise, oftenrnedfeto  the single neuron ISI distribution. The neuronal spikensapro-
as spikes. These spikes are commonly interpreted as aciten-p duced are coupled to the modeled electrode using the elttiace
tials (APs) from single neurons [1, 2, 3, 4]. Charactersst€ the  filtering model in [8].
microelectrode recording (MER), such as an increase in tiigen
amplitude when entering the STN, are used by the surgical tea In order to generate another synchronized neural sub-set th
locate the target for stimulation [5, 6]. same process can be used, with a different group of neurtetctesd
and a separate probability distribution for synchronizedirtg
Previous work has modeled how an increase in MER noise cafivents generated. Neurons that synchronize in one grougtitan
be attributed to neural structure, showing that the eleéigld from  synchronize in another group. For spatial localizationroligs, the
a large number of neurons, up to 10,000 neurons, can cogribu heurons are selected using a Gaussian distribution in satered

the recording [7, 8]. In these models each neuron is simdilasea  ©n the group with a standard deviation based on the spatizddf
the desired group as shown in Figure 2.

*This work was supported by Medtronics. ) ) ) o
fis the recipient of an Australian Research Council Futuro®ship The signal to noise ratio (SNR) of the spikes is calculatethky
(FT110100623). ing the average maximum peak amplitude for a spike and cangpar
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Fig. 1. Raster plot of the simulated neuron firing times and the Mig#e tseries. The vertical lines of increased density in tiséergolot
correspond to the synchronized firing events, with a fractib0.15 synchronization. There are two synchronized gslifeneurons, giving

two different spike shapes/amplitudes.
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Fig. 2. Comparison of the probability of a neuron belonging to a
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synchronized subset for uniform distributed and spatiaitalized
selections. The three coloured lines represent threereliffesyn-
chronized subsets (above the graph uniformly distributebteelow

spatially localized).

spike timing to the synchronized times in the simulation.

3. RESULTS

A raster plot, Figure 1, of the simulated neuron firings shoow
the synchronized firing times correspond to a spike with gelar
signal to noise ratio. In the raster plot two separate syrihed
subsets can be seen. Although there are two subsets witlarte s
percentage of total neurons synchronized, their spatiahgement
around the electrode are different. The effects of thisiapatrange-
ment can be seen in the MER time series, where two differeke sp
shapes are present.

As the number of neurons that are synchronized increases Fig
ure 3 shows a linear increase of the mean peak amplitude of the
CAP spike, averaged over 20 simulations. The variance of the
peak amplitude also increases significantly, depending®spatial
distribution of the sub-set of synchronized neurons, i.s.mere
neurons are synchronized they are more likely to come from a
wide spread of locations. Figure 3 shows synchronizaticer tve
biologically plausible range of 0-0.30 for the STN [5]. Foms
chronization above 0.5 the mean peak signal amplitude besom

it to the root mean square (RMS) voltage of the noise (shown irconstant a8.06 & 0.52 mV/, with variance decreasing to zero when
Figure 1). Spike sorting of the recordings is performed gigdsort
[9], with compact support bi-orthogonal ‘1.5’ wavelet atlividual
wavelet scales corresponding to between 0.1 and 1ms. Tke clu  Figure 3 shows when two sub-sets of synchronized neurons
tering is unsupervised, with cluster validity checked bynparing
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all neurons are synchronized.

differ substantially in their spatial distribution, spikerting can be
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Fig. 3. Mean peak signal amplitude as the fraction of neurons in thesjg. 5. The number of groups clustered for six spatially localiaed
synchronized sub-set changes. The mean is taken over 2@asimus;jx uniformly distributed subsets of synchronized groupseurons
tions and the error bars are one standard deviation. Theddiste  gyer 100 simulations. The sticks represent the maximum hed t
represents the average RMS value of the recordings, shoigune  minimum number of groups, the box represents the 25th arfdl 75t
1 percentile and the notch is the mean.

successfully achieved. This occurs more often when theonsiare
spatially localized, however it can occur when the two sets-gare
uniformly distributed as per Figure 2.

enough to the electrode tip for its action potential to baigicantly
larger than the background noise and thus appear as a spike. T
shows that it is possible for DBS MER spikes to representlsing
neuron activity. However, the likelihood of two or more neus

Raw spike groups Average waveform of cluster contributing AP spikes in these MER simulations is very loe¢ b
1000 1000 cause of their spatial distribution.
There are two methods to produce visible spikes in the MER
500 500 simulations. The first method is to place a neuron very close t
< the electrode (where the current source is adjacent to phef the
=1 - Ao electrode). The second method is to introduce synchroaizaind
§’ 0 0 produce a CAP. For DBS MERs the spikes are often thought to be
S APs produced by single neurons. Spike sorting techniquesed

-500 on shape, amplitude and rate, are then used to determireMER
spikes all correspond to the same neuron, or multiple neuicng
at different times [9]. It can be seen that these spike sprtiathods

-500

-1000 -1000 can also be used to sort CAP spikes generated by synchrionizat
%0 Tl%)e%r?g)zoo 20 %0 Tlﬁﬁ)e%rig)zoo 250 ?hepgr_:_(:\ilng on the spatial distribution of the synchronaratiithin
e .

Fig. 4. Comparison of two CAPs after spike sorting from a simula-

tion with synchronization percentage of 25% total synchzation. . . . . :
For this simulation there were two synchronized subsetgofons (e Spike sorting of different synchronized subsets faliteproduce

with each subset uniformly distributed across all the nesrand ~ the correct number of clusters. This is due to the effecthape of
12.5% of neurons in each set. the CAP produced by a subset of synchronized neurons being to

similar. Their similarity in shape of the spike is an averaffect of
the action potentials from each neuron that is synchroni2exithe
distribution of the synchronized subsets has a uniform gdvdity
of selecting any neuron, the average spike shape for eadetsisb
on average the same. In general the CAP shape is dominatée by t
closest neurons to the electrode, with minimal extracailfiltering.
On average neurons that are further away are more likely &ebe
lected because the number of neurons located at a partéistance
depends on the square of the radial distance from the ettegtrd.

4. DISCUSSION However, the further the neuron is from the electrode, theentive

electric field is filtered by the extracellular medium [7, 8, 11],

Figure 3 shows that for no synchronization there is a charice owith an amplitude decay larger thay'r®. Therefore, the main
having a peak signal amplitude two times above the RMS ndise. difference between the two CAPs produced by a subset of synch
this case a neuron current source (the axon hillock) is éatalose  nized neurons will be the total number of closer neuronschvhiill

When synchronization was uniformly spread through the STN

Figure 5 shows that when the synchronization of six neutal su
sets is changed from uniform across space, to spatialljizech the
spike sorting algorithm can distinguish more clusters. theruni-
form distribution only two to three clusters are found 50%tHué
time. For the spatially localized neural subsets more tban ¢lus-
ters are found 75% of the time.
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change the amplitude of the spike, as seen in the examplgumd=4.  nization is uniformly distributed. The spike sorting medbgerform
better when the synchronized groups are spatially loahlize
When the synchronized subsets are defined to be spatially lo-

calized, rather than across all of the STN, the compoundrmcti 6. REFERENCES
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