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ABSTRACT

An asynchronous brain–computer interface (BCI) is one of the cru-
cial challenges in biomedical signal processing. In asynchronous
BCIs, a state when a user does not intend to input commands needs
to be distinguished from a state when he/she does. These states are
called non-control (NC) state and intentional control (IC) state re-
spectively. In this paper, a new phase-based method to discrimi-
nate between IC/NC states for steady-state visual evoked potential
(SSVEP) based asynchronous BCIs is proposed. The method has a
two-step tree structure: in the first step, a SSVEP frequency is rec-
ognized with canonical correlation analysis (CCA), and in the next
step, the state of a user is detected as IC or NC with a classifier such
as SVM using phase information. The proposed method was tested
on six healthy subjects and has been proved to be reliable in terms
of sensitivity and specificity.

Index Terms— Brain–computer interface, Asynchronous BCI,
Steady-state visual evoked potentials, Phase locking value, Support
vector machine

1. INTRODUCTION

Brain–computer interfacing (BCI) is an emerging and potential ap-
plication of signal processing and machine learning in human com-
puter interaction. BCI controls a computer or a device by capturing
human brain activities [1]. This technology provides another way
of communication for people who have difficulty in communicating
with the external world [2].

A well-known noninvasive recording of the brain activity is elec-
troencephalogram (EEG). Typical responses of the brain are steady-
state visual evoked potentials (SSVEPs), which are responses of the
visual cortex to a periodic visual stimulus such as flickering lights
[3], event related potentials (ERPs), which are responses to sensory
or cognitive event [4], and so forth. Among them, SSVEP allows
BCIs to achieve fast and accurate command input, and various BCIs
based on SSVEP have been reported [5–15].

BCIs can be divided into synchronous and asynchronous ones by
its operational protocol [5, 8]. With the synchronous BCIs, a timing
of command input is controlled by the BCI and operations are exe-
cuted with a certain time interval. However, in a real environment,
not all the time a user intends to input commands. On the other
hand, with the asynchronous BCIs, the user can input a command
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when he/she intends to do so. Thus the asynchronous BCIs are con-
sidered to be a promising component of practical BCIs that require
asynchronous operational protocol [5,9]. In the asynchronous BCIs,
a state when the user does not intend to input commands needs to
be considered. This state is typically called non-control (NC) state
while a state when the user intents to input commands is called in-
tentional control (IC) state [5, 6, 9, 10, 16].

Recently, Cecotti [6] has proposed a self-paced and calibration-
less BCI speller based on SSVEP. Also, Parini et al. [7] have pre-
sented a self-paced SSVEP-BCI using the common spatial patterns
(CSPs) to spatially filter the signal derived from each channel. Their
methods were highly focused on boosting the recognition accuracy
and the information transfer rates (ITRs). Meanwhile, the subjects
were constantly in the IC state and the NC state was not considered
in their experimental paradigm. Besides, Xia et al. [5] have proposed
a method for discrimination between the IC and the NC states based
on the canonical correlations, and the performance was evaluated in
the online asynchronous paradigm. Although, in the asynchronous
experiment, it needed at least 5.0 seconds to input one command and
the performance got worse with a shorter period of time to input it.

In this paper, we propose a new method of discrimination be-
tween the IC and the NC states for an asynchronous SSVEP based
BCI. This method has a two-step tree structure as follows: in the
first step, a frequency of visual stimulus is estimated with canoni-
cal correlation analysis (CCA). In the second step, IC/NC states are
classified with SVM using phase locking value (PLV) as features.
The recorded EEG in our experiment was analyzed offline and the
performance was compared with a previous method.

2. METHODS

2.1. Subjects and experimental settings

Five males and one female in their twenties took part in our exper-
iment. All subjects were healthy and had normal or corrected-to-
normal vision. They were given an informed consent, and this study
was approved by the research ethics committee of Tokyo University
of Agriculture and Technology.

We used Ag/AgCl active electrodes which are products of
Guger Technologies (g.tec) named g.LADYbird, g.LADYbirdGND
(for GND), and g.GAMMAearclip (for reference, earclip type) for
recording EEG data. These were driven by the power supply unit
named g.GAMMAbox (g.tec). The electrodes were located at Pz,
POz, Oz, O1 and O2 following the international 10–20 system [17].
The electrodes for GND and reference were AFz and A1, respec-
tively. The signals were amplified by MEG-6116 (Nihon Kohden),
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Fig. 1. An image of displayed targets. Each target was flickered with
different frequencies as visual stimuli. A centered cross was a cue
for trials of the NC state.

Table 1. Flickering frequencies assigned to BCI commands corre-
sponding to visual targets on the screen.

Target Tk Frequency fk

T1 7.58 Hz
T2 8.47 Hz
T3 12.00 Hz
T4 13.09 Hz
T5 14.40 Hz
T6 16.00 Hz

that provides lowpass and highpass analog filters for each channel.
We set the cutoff frequencies of the lowpass and the highpass filters
to 100 Hz and 0.5 Hz, respectively. The EEG signal was sampled by
A/D converter (AIO-163202F-PE, Contec) with a sampling rate of
1, 440 Hz. The signals were recorded and downsampled to 240 Hz
with Data Acquisition Toolbox of the MATLAB (MathWorks).

Fig. 1 shows an image of displayed targets. As illustrated in
Fig. 1, six targets as visual stimuli were displayed on a 24 inch LCD
monitor with a resolution of 1920 × 1080 and a refresh rate of 144
Hz. The targets were square checkerboards that reversed black and
white according to the frequencies listed in Table 1. In the experi-
ment, the subjects seated on a comfortable chair in front of a display
55 cm away so that they could look at the display straight ahead.

2.2. Task

In IC trials, the subjects gazed at one of the flickering targets, and
in NC trials, the subjects gazed at the non-flickering centered cross
as illustrated in Fig. 1. The subjects performed each IC/NC trial al-
ternatively. Each trial lasted 3 seconds. Each session was consisted
of 20 successive trials and five sessions were executed for each sub-
ject. After each session, the task was stopped in order to reduce the
fatigue of the subjects’ eyes.

2.3. Data analysis

Recorded EEG in the experiment were analyzed offline. As illus-
trated in Fig. 2, our proposed method has two steps:

Step 1. Detect the potential frequency with CCA,

CCA

EEG

IC NC

PLV

Step 1

Step 2

SVM 1 SVM K

IC NC

Fig. 2. The proposed decision tree. In the first step, the CCA identi-
fies the frequency that may correspond to the SSVEP. In the second
step, the SVM with respect to each target frequency is used as a clas-
sifier to determine whether the frequency component is the SSVEP
response, that is, IC or NC state.

Step 2. Classify a feature vector consisting of the PLVs at all chan-
nels with SVM to discriminate between the IC and the NC
states.

In addition, we ignored samples corresponding to 0.15 seconds just
after a trial started considering a delay of SSVEP onset [18]. Thus,
the signal for 3 − 0.15 = 2.85 seconds was used for the analysis.

The underlying idea behind this two-step method is as follows:
in the IC state, EEG signal would be in phase with a signal with a
SSVEP frequency. On the other hand, in the NC state, there would
be no SSVEP, thereby EEG signal would be out of phase. For this
reason, the phase synchrony of the IC state is expected to be greater
than that of the NC state. Accordingly, we can discriminate those
states measuring the phase synchrony as the PLV.

2.3.1. Detection of the stimulus frequency with CCA

In the first step, the SSVEP frequency was detected by applying
CCA. Let x(t) ∈ RM be an M-channel EEG signal and y(t) ∈ R4·6

consist of ‘Fourier basis functions’ of the 1st and 2nd harmonics of
simulated stimulus signals, which are ideal SSVEP with frequency
f given as

y(t) =
[
{sin(2π f t), cos(2π f t), sin(4π f t), cos(4π f t)} f∈Ω

]T
, (1)

where the first two components are the sinusoids of the fundamen-
tal frequency f , the others are the 2nd harmonics, and Ω is the set
of frequencies as listed in Table 1. To detect frequencies of SSVEP
components contained in the EEG for the SSVEP-based BCI sys-
tems, first, canonical correlation ρ corresponding to flickering fre-
quency f is calculated:

ρ = max
wx ,wy

wT
xE[x(t)yT(t)]wy√

wT
xE[x(t)xT(t)]wxwT

yE[y(t)yT(t)]wy

. (2)

Then, frequency f̂ that maximizes the weight vector with respect to
y(t) is chosen, that is,

f̂ = argmax
f∈Ω

[(
ws

f

)2
+

(
wc

f

)2
+

(
ws

2 f

)2
+

(
wc

2 f

)2
]

, (3)
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where ws
f , wc

f , ws
2 f and wc

2 f are the elements in the weight vector
given as in

wy =

[{
ws

f ,w
c
f ,w

s
2 f ,w

c
2 f

}
f∈Ω

]T
, (4)

which is the solution of (2).
It is worth noting that our method is based on the method pro-

posed by Kimura et al. [19] that employed the weight vector with
respect to y(t) to select the stimulus frequency as described in (3).
This method uses a reference vector including sinusoids of all target
frequencies. Thus, we carry out the CCA only once. On the other
hand, Lin et al.’s method [20] should apply the CCA K times, the
number of flicking patterns. For further details about their methods,
see [19, 20].

2.3.2. Discrimination between the IC and the NC state

In the next step, we determined whether the stimulus frequency f̂
detected above was derived from SSVEP or not based on phase in-
formation called phase locking value (PLV) as features to be classi-
fied.

The PLV is widely used to measure phase synchronization of
two signals by the instantaneous phase difference [21–23]. It is de-
fined as follows:

PLVm,h =
∣∣∣〈e j∆φm,h(t)〉

∣∣∣ , (5)

with
∆φm,h(t) = φyh (t) − φxm (t) , (6)

where φxm (t) is instantaneous phase of x(t) at channel m, φyh (t) is
instantaneous phase of y(t) with the hth harmonic of a frequency,
and 〈·〉 is the averaging operator over time. We used the samples for
the CCA to calculate the PLV, so that the averaging operator takes
the average over 2.85 seconds (2.85 × 240 = 684 samples). Besides,
we calculated the PLV between an EEG signal xm(t) and a reference
complex signal with the estimated stimulus frequency f̂ as

yh(t) = exp(2π f̂ ht) , (7)

where h denotes an order of harmonic. Here, we set the order of
harmonic as h = 1, 2 as described before. The PLV of f̂ and its 2nd
harmonic at each channel was calculated to construct one feature
vector as

u =
[
PLV1,1, ..., PLVM,1,PLV1,2, ...,PLVM,2

]
, (8)

where M is again the number of channels. Thus, the size of u in
the method is 5 × 2 = 10. To calculate the PLV, the instantaneous
phase of the signal needs to be estimated. The PLV calculated for
each channel and each harmonic was used for features to discrimi-
nate between the IC and the NC states with support vector machine
(SVM) using linear kernel and the penalty parameter c = 1. We em-
ployed three methods to extract the phase: continuous wavelet trans-
form (CWT), Hilbert transform (HT) and discrete Fourier transform
(DFT) as described below.

A. Continuous wavelet transform

Wavelet analysis gives us a flexible way to analyze nonstationary
signals such as EEG [24]. The CWT of a signal x(t) is given as [25]

W(a, b) =
1
√

a

∫ ∞

−∞
x(t)ψ?

(
t − b

a

)
, (9)

where ψ?(·) is the complex conjugate of the scaled and shifted
mother wavelet, a is the scale factor and b is the shift factor. In this

paper, the complex Morlet wavelet was used as mother wavelet ,
which is often used in EEG analysis [26,27] defined as follows [25]:

ψ(t) =
1√
π fb

ei2π fcte−
t2
fb , (10)

where fb = 1.0 is the bandwidth parameter, fc = 1.0 is the wavelet
center frequency and i =

√
−1 is the imaginary unit. Thus, the in-

stantaneous phase can be determined with the wavelet coefficients
as

φ(a, b) = arctan
(
=(W(a, b))
<(W(a, b))

)
, (11)

where<(·) denotes the real part and =(·) denotes the imaginary part.

B. Hilbert transform

The HT also allows us to extract the instantaneous phase [28] of a
narrowband signal. The HT of a signal x(t) is given as

x̃(t) =
1
π

∫ ∞

∞

x(t)
t − t′

dt′ , (12)

where the integral is the Cauchy principal value integral. It yields

z(t) = x(t) + ix̃(t) , (13)

which is called the analytic signal of x(t). Thus, the instantaneous
phase can be determined as follows:

φ(t) = arctan
(

x̃(t)
x(t)

)
. (14)

In this paper, the EEG signal was Butterworth bandpass filtered
within f̂ h ± 2 Hz before applying the HT.

C. Discrete Fourier transform

The initial phase at a certain frequency can be also extracted using
DFT with a window function and a time series data of phase com-
ponents can be derived by sliding the window with a small shift size
similarly to the short-time Fourier transform. The DFT of a signal
x(n) is defined as

F(k) =
N−1∑
n=0

x(n)e−i 2πnk
N , (15)

where n is the sample point. The instantaneous phase can be derived
as follows:

φ(t) = arctan
(
=(F(k))
<(F(k)

)
. (16)

Here, we set a length of the sliding window as 1.0 second and the
step size was one sample.

2.4. Contrast method

Xia et al. proposed a method [5] to discriminate between the IC and
the NC state using the canonical correlation coefficients derived from
CCA. In the IC state, the correlation coefficient corresponding to
the stimulus frequency is expected to be the largest while the other
correlation coefficients are small. On the other hand, in the NC state,
the correlation coefficients are not different each other significantly.
Under this assumption, a threshold was set to distinguish the IC state
from the NC state as follows:

ρsec

ρmax
≤ θ , (17)
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Table 2. Comparative results of the sensitivity (SEN) and the specificity (SPC). In the table, CWT, HT, and DFT stand for continuous wavelet
transform, Hilbert transform, and discrete Fourier transform, respectively.

Proposed method Xia et al.’s method
Subject CWT HT DFT

SEN [%] SPC [%] SEN [%] SPC [%] SEN [%] SPC [%] SEN [%] SPC [%]

sub1 74 84 70 82 68 84 60 76
sub2 40 82 42 72 50 72 54 40
sub3 82 82 70 88 70 80 70 82
sub4 60 78 58 72 62 78 56 82
sub5 62 90 58 74 54 72 46 84
sub6 50 74 46 76 40 72 44 74

Mean 61.2 81.7 57.3 77.3 57.3 76.3 55.0 73.0
S.D. 0.15 0.05 0.12 0.06 0.12 0.05 0.10 0.17

where ρmax is the largest correlation coefficient and ρsec is the sec-
ond largest correlation coefficient. The threshold θ for each subject
was manually set according to their performance in the synchronous
experiment. In this paper, we chose the threshold θ according to the
Bayesian classification rule. It set the threshold θ where the posterior
probability of the IC state was equal to that of the NC state.

2.5. Performance evaluation

To evaluate the performance of the proposed method, we used sen-
sitivity and specificity defined as follows:

SEN =
TP

TP + FN
, (18)

SPC =
TN

FP + TN
, (19)

where TP (true positive) and FN (false negative) occur in the IC state
while FP (false positive) and TN (true negative) occur in the NC
state. Thus SEN = 100 % means that all the IC states are correctly
detected and SPC = 100 % does that all the NC states are correctly
detected. Moreover, we measured the command recognition accu-
racy under the condition of TP.

3. RESULTS AND DISCUSSIONS

The performance was evaluated based on the leave-one-out cross-
validation. Table 2 shows the comparative results of the sensitivity
and the specificity of the proposed method using the CWT, the HT
and the DFT, and Xia et al.’s method.

The proposed method showed better performance than Xia et
al.’s method in both of the sensitivity and the specificity. In Xia et
al.’s method, the sensitivity and the specificity of sub2 were both
lower than the proposed method. It seemed that sub2 had weak re-
sponses of the SSVEP , which made the ratio of rho defined in (17) in
the IC state not greater enough than that in the NC state. It suggests
that Xia et al.’s method is not suitable to discriminate IC/NC states
for a user whose responses of the SSVEP are not very strong. On the
contrary, it seems that the proposed method has robustness even for
such a user. In terms of phase detection in the proposed method, the
CWT showed better performance than the other two methods in the
sensitivity and the specificity.

Across all three methods, the specificities were higher than the
sensitivities. This result seems reasonable because the NC state is
more frequent than the IC state in a real environment. Moreover,

Table 3. The command recognition accuracy under the condition of
true positive (TP).

Subject Accuracy [%]

sub1 97.3
sub2 85.0
sub3 97.6
sub4 93.3
sub5 87.1
sub6 88.0

Mean 91.38
S.D. 0.05

FPs are more annoying than FNs to users, i.e., they would prefer
spending longer time inputting commands to allowing the BCIs to
execute unintended commands.

Table 3 shows the command recognition accuracy of the pro-
posed method when TP occurred, i.e., the IC state was detected as
IC correctly. This is the result when the phase was extracted by em-
ploying the CWT. The mean command recognition accuracy across
the subjects was 91.38 % and it seems in a reliable level.

4. CONCLUSION

We proposed a new method to discriminate between the IC and the
NC states for asynchronous BCIs based on SSVEP. The proposed
method had a two-step tree structure as follows: in the first step, a
SSVEP frequency was estimated with CCA, and in the next step, the
state was classified as IC or NC with a classifier using the PLVs as
features.

The experimental result showed that the proposed method had
better performance than the previous work in the sensitivity and the
specificity. The command recognition accuracy was also in a reliable
level.

Although there is still room for improvement to the proposed
method in terms of the sensitivity and the specificity. It would be
improved using further information of phase, e.g., in this paper, the
PLVs were calculated between EEG signal and the reference signal,
although, the PLVs between EEG signal from two channels could
be useful as well. In the future work, the issue described above will
be investigated to increase the accuracy. Also, the proposed method
will be implemented as an online asynchronous BCI.
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