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ABSTRACT 

 

Recent empirical research has discovered that linkages 

among fMRI signals of the brain in resting-state have 

meaningful temporal variations. Most current studies of 

brain networks assume that these linkages are constant. We 

propose a model and an accompanying algorithm to infer 

and track changes in these interaction strengths, thus 

providing a more comprehensive way to study brain 

dynamics. The stochastic model employed is akin to one 

used for neuronal states (DCM) and a Rao-Blackwellized 

filtering algorithm is set up for tracking purposes. Our 

results show that time-varying interactions among brain 

regions can be successfully found which have the potential 

of providing great clinical value.
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Index Terms— resting state fMRI, functional 

connectivity, BOLD, Rao-Blackwellized particle filter. 

 

 

1. INTRODUCTION 

 

Brain research has shifted its focus from studying 

segregation of the brain into discrete parts to attempting to 

discern the integration among its different interacting 

components. Whereas several imaging modalities are 

available such as PET (positron emission tomography), EEG 

and MEG (electro and magneto encephalography), fMRI 

(functional magnetic resonance imaging) is the dominant 

approach as it is non-invasive, efficient, cost-effective and 

offers superior spatial resolution. The measured fMRI signal 

is the result of the BOLD (blood oxygenation level 

dependent) effect and reflects an increased local demand for 

oxygen in brain regions with elevated neural activity. 

Functional connectivity is widely quantified using temporal 

correlation among BOLD signals[1][2][3], Mutual 
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Information[4][5] or Independent Component Analysis[6]. 

These strategies give time-averaged results over the 

observed data, hence capturing no temporal variation and 

greatly simplifying the analysis. More complex and 

biologically meaningful models exist that describe the 

interaction between neuronal regions and relate these to the 

resultant hemodynamic response measured implicitly by 

fMRI. These include structural equation modelling 

(SEM)[7] and deterministic and stochastic dynamic causal 

modelling (DCM)[8][9][10][11]. Though schemes such as 

Dynamic Expectation Maximisation[12], Variational 

Bayes[13], Metropolis-Hastings[14] and Particle 

Filtering[15] have been used to track hidden states and 

estimate (constant) physiological parameters, they do not 

account for time-varying dependencies between different 

regions of the brain.  

 Recent evidence suggests that dynamic functional 

connectivity exhibited by BOLD signals may have a 

neuronal origin [16][17]. It is thus worthwhile to study the 

time-varying nature of these networks as they could yield 

better insight into brain functions as well as having potential 

clinical value by providing disease markers for diagnostic 

purposes. The few instances in the literature that address 

temporal features are largely limited to sliding window 

approaches[16][18][19][20] which have numerous 

limitations including high sensitivity to noise and  choice of 

window size. 

  Functional networks in resting state fMRI, which 

occur when there is no external input and which persist even 

during sleep and anesthesia, have been identified as being 

similar to those in task focused  fMRI, and have been used 

to draw fundamental mapping of the brain[21]. It is believed 

that during the time period in which data acquisition occurs, 

the brain would not be in a resting state all the time but 

would go into ‘active’ episodes, thus undergoing a dynamic 

response[22]. The aim of this paper is to identify this 

transient response and distinguish subsequent networks 

formed by identifying changes in inter-regional interaction. 

This paper comprises five sections. Section 2 presents a 

dynamic model where the states of different brain regions 

are dependent on other nodes through smoothly time-
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varying linkage parameters. It then explains a marginalized 

particle filtering algorithm to compute estimates for these 

dynamic parameters describing changes in the underlying 

network. The methodology is first verified on synthetic data 

in Section 3 before it is tested on real data of resting state 

fMRI in Section 4. Conclusions and suggestions for future 

work are discussed in Section 5. 

 

2. METHODOLOGY 

2.1. Model 

BOLD signals 𝑥𝑖,𝑡 at each node (brain location) are 

modelled as being linked to those at all other nodes 

(including themselves) via the following linkage model, in 

which the effect of node 𝑗 on node i depends on the 

𝜑𝑖,𝑗,𝑡  parameter 

𝑑�̇�𝑖,𝑡 = ∑𝜑𝑖,𝑗,𝑡𝑥𝑗,𝑡𝑑𝑡

𝑁

𝑗=1

+ 𝑑𝑊𝑖,𝑡  , (1) 

where 𝑥𝑖,𝑡 is magnitude of the BOLD signal at node i at time 

𝑡 and �̇�𝑖,𝑡  is its rate of change; 

𝜑𝑖,𝑗,𝑡 is the interaction parameter between nodes i and 𝑗 at 

time 𝑡; 

𝑊𝑖,𝑡 is random noise generated independently for node i ; 

𝑁 is the total number of nodes in the network. 

The system can be described as a linear stochastic 

differential equation of the form 

 

𝑑𝑋𝑡 = 𝐴𝑡𝑋𝑡𝑑𝑡 + 𝐵𝑑𝑊𝑡  , (2) 

where 𝑋𝑡 ∈ 𝑅2𝑁×1 is [𝑥𝑡,1, �̇�𝑡,1, 𝑥𝑡,2, �̇�𝑡,2 … …𝑥𝑡,𝑁 , �̇�𝑡,𝑁]
𝑇 

and is the state of all nodes (magnitude and rate of change) 

at time 𝑡. 

The matrix 𝐴𝑡 ∈ 𝑅2𝑁×2𝑁 is defined as: 

𝐴𝑡 =

[
 
 
 
 
 
 
0           1           0 … … … … … … … …             

𝜑
1,1,𝑡 

   0          𝜑
1,2,𝑡 

        0          𝜑
1,3,𝑡

… … 

0           0           0               1          0 … … ….  

𝜑
2,1,𝑡 

   0          𝜑
2,2,𝑡 

        0          𝜑
2,3,𝑡

… … 

⋮

⋮

⋮ ]
 
 
 
 
 
 

 (3) 

and 𝐵 ∈ 𝑅2𝑁×𝑁  is given by 

𝐵 =  [
𝐵1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐵1

] ;  𝐵1 = [
0
1
]. (4) 

 

The observation model is specified as 

𝑧𝑖,𝑡 = 𝑥𝑖,𝑡 + 𝑣𝑖,𝑡  , (5) 
where 𝑣𝑡  is random noise having a Gaussian distribution 

with a mean of zero and variance 𝜎𝑍
2 and the state equation 

is analogous to stochastic DCM for neurological networks 

used for resting-state data (i.e. not involving any exogenous 

inputs)[23]. The noise term in Equation (2) represents 

physiological noise such as cardiac motion, variation in 

respiratory volume etc. whereas that in Equation (5) models 

measurement noise. This model allows the problem to be 

cast in probabilistic terms. In order to estimate the BOLD 

signals 𝑋𝑡  and their linkages 𝜑𝑖,𝑗,𝑡   from observations, the 

aim is to calculate the posterior probability distribution 

𝑝(𝑋𝑡 , 𝜙𝑡|𝑍1:𝑡) where 𝜙𝑡 ∈ 𝑅𝑀×1 is [𝜑1,1,𝑡 , 𝜑1,2,𝑡 , …𝜑𝑁,𝑁,𝑡]
𝑇
,

𝑍𝑡 ∈ 𝑅𝑁×1 is [𝑧1,𝑡 , 𝑧2,𝑡 , …… 𝑧𝑁,𝑡]
𝑇
and 𝑍1:𝑡 is the observation 

set up to time t.  

The transition probability from one time period to the 

next for 𝑋𝑡  and 𝜙𝑡  is modelled as 

 

𝑝(𝑋𝑡 , 𝜙𝑡|𝑋𝑡−1, 𝜙𝑡−1) = 𝑝(𝜙𝑡|𝜙𝑡−1)𝑝(𝑋𝑡|𝑋𝑡−1, 𝜙𝑡), (6) 
 

where 𝜙𝑡 depends on 𝜙𝑡−1 only and 𝑋𝑡 depends on the 

previous state 𝑋𝑡−1and the current values of 𝜙 variables. 

Interaction parameters are allowed to vary with time 

according to the following model (i.e. a random walk prior) 

 

𝑝(𝜙𝑡|𝜙𝑡−1) =  𝒩(𝜙𝑡|𝜙𝑡−1, 𝜎𝜙
2𝐼), 

𝑝(𝑋𝑡|𝑋𝑡−1, 𝜙𝑡) =  𝒩(𝑋𝑡|𝐹𝑡(𝜙𝑡)𝑋𝑡−1, 𝑄𝑡(𝜙𝑡)), 
(7) 

(8) 

 

where 𝐼 is an identity matrix. The transition matrix 𝐹𝑡 and 

covariance matrix 𝑄𝑡 depend on the interaction parameters 

𝜙𝑡  and are found according to calculations given in [24]. 

The observation probability density for the joint state is 

given by: 

 

𝑝(𝑍𝑡|𝑋𝑡) =  𝒩(𝑍𝑡|𝐻𝑋𝑡 , 𝜎𝑍
2𝐼) , (9) 

 

where 𝐻 ∈ 𝑅𝑁×2𝑁  is defined as 

𝐻 = [
𝐻1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐻1

] ;  𝐻1 = [1 0] . (10) 

 

 

2.2. Algorithm 

Instead of using a generic bootstrap particle filter which 

does not handle a large number of variables adequately, a 

marginalized filter is set up using a procedure known as 

Rao-Blackwellization, followed by particle smoothing [25]. 
It can be seen from the model equations that the overall state 

can be partitioned into two components: signal magnitudes 

and their rates of change: 𝑋𝑡, and linkage parameters: 𝜙𝑡. 

Conditional upon the linkage parameters, the signals and 

rates are linear and Gaussian, thus standard linear Gaussian 

optimal filtering (Kalman filtering) may be used to infer 

them. Particle filtering can be used to infer the distribution 

of the nonlinear 𝜙𝑡 portion of the state, which is 

approximated as a weighted collection of samples 𝜙𝑡
(𝑖)

 

with 𝑖 = 1, … ,𝑀. 

Conditional on each sample of  𝜙𝑡
(𝑖) in the particle 

collection, the linear part 𝑋𝑡  is expressed in the form of a 

linear Gaussian state-space model as follows: 
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𝑋𝑡 = 𝐹𝑡(𝜙𝑡
(𝑖))𝑋𝑡−1 + 𝑢𝑡 , 

𝑍𝑡 = 𝐻𝑋𝑡 + 𝑣𝑡 . 

(11) 

 

(12) 
Noise is represented by terms 𝑢𝑡 and 𝑣𝑡 which are 

independent, zero-mean and Gaussian, with covariance 

matrices given by 𝐶𝑢 = 𝑄𝑡(𝜙𝑡
(𝑖)) and 𝐶𝑣 = 𝜎𝑍

2𝐼. The 

parameters 𝜙𝑡
(𝑖) are sampled for each 𝑖-th particle according 

to the first-order Markov chain model given in Equation (7). 

Then, for each particle, conditioned on 𝜙𝑡
(𝑖)  and 

observations 𝑍0:𝑡, the linear part 𝑋𝑡 can be calculated using 

Kalman filtering on the system. Since the distribution of 𝑋𝑡 

found via Kalman filtering is Gaussian, the posterior over 

𝑋𝑡  is a weighted Gaussian mixture model, with one 

component corresponding to each particle. 

Conditioned on each sample 𝜙𝑡
(𝑖)

, the predictive 

distribution of 𝑋𝑡 conditioned upon all past measurements is 

given by 

𝑝(𝑋𝑡|𝑍1:𝑡−1, 𝜙1:𝑡
(𝑖)  ) =  𝒩(𝑋𝑡|𝜇𝑡|1:𝑡−1, 𝐶𝑡|1:𝑡−1), 

 
(13) 

where 

𝜇𝑡|1:𝑡−1 = 𝐹𝑡(𝜙𝑡)𝜇𝑡−1|1:𝑡−1, 

𝐶𝑡|1:𝑡−1 = 𝐹𝑡(𝜙𝑡)𝐶𝑡−1|1:𝑡−1(𝐹𝑡(𝜙𝑡))
𝑇

+ 𝐶𝑢 . 

 

 

(14) 

 

(15) 

After obtaining the current measurement 𝑍𝑡, the 

posterior distribution of 𝑋𝑡  is given by 

 

𝑝(𝑋𝑡|𝑍1:𝑡 , 𝜙1:𝑡
(𝑖)  ) =  𝒩(𝑋𝑡|𝜇𝑡|1:𝑡 , 𝐶𝑡|1:𝑡), (16) 

 

where 

𝜇𝑡|1:𝑡 = 𝜇𝑡|1:𝑡−1 + 𝐾𝑡(𝑍𝑡 − 𝐻𝜇𝑡|1:𝑡−1), 

𝐶𝑡|1:𝑡 = (𝐼 − 𝐾𝑡𝐻)𝐶𝑡|1:𝑡−1, 

𝐾𝑡 = 𝐶𝑡|1:𝑡−1𝐻
𝑇(𝐻𝐶𝑡|1:𝑡−1𝐻

𝑇 + 𝐶𝑣)
−1

. 

(17) 

(18) 

(19) 

 

Since the posterior distribution of 𝑋𝑡 found via this 

Kalman filtering is Gaussian, the posterior over 𝑋𝑡  is a 

weighted Gaussian mixture model, with one component 

corresponding to each particle.   

The following term can also be computed using the 

prediction error  

𝑝(𝑍𝑡|𝑍1:𝑡−1, 𝜙1:𝑡) =  𝒩(𝑍𝑡|𝜇𝑍𝑡
, 𝐶𝑍𝑡

) , (20) 
where  

𝜇𝑍𝑡
= 𝐻𝜇𝑡|1:𝑡−1, 

𝐶𝑍𝑡
=  𝐻𝐶𝑡|1:𝑡−1𝐻

𝑇 + 𝐶𝑣 . 

(21) 

(22) 

This can be used to update the weight of each particle 

according to  

�̃�𝑡
(𝑖) = 𝜔𝑡−1

(𝑖) 𝑝 (𝑍𝑡|𝑍1:𝑡−1, �̃�𝑡
(𝑖)

) , (23) 

where initially 𝜔𝑜
(𝑖) = 1 𝑁⁄  for all 𝑖. The posterior 

distribution of the interaction parameters is approximated by 

the weighted particle collection as: 

𝑝(𝜙𝑡|𝑍1:𝑡) ≈ ∑�̃�𝑡
(𝑖)

𝑖

𝛿 (�̃�𝑡

(𝑖)
) . (24) 

 

 

Figure 1: Simulated network diagram 

 

Figure 2: Tracking results from synthetic data. Red line shows true 

value. Black line shows estimated mean and grey region shows 1 

standard deviation 

 

Table 1: Comparison of RMSE obtained from sliding window 

approach and particle filtering 

Average RMSE Sliding Window Particle Filtering 

N = 2 0.270 0.187 

N = 3 0.296 0.207 

N = 4 0.408 0.142 

N = 5 0.431 0.250 

N = 6 0.409 0.325 

 

3. SIMULATED DATA 

 

Due to lack of ground truth available from experimental 

data, the algorithm is first tested on a synthetic sample in 

order to verify its robustness and efficiency, and confirm its 

ability to estimate meaningful results when applied to 

experimental fMRI data. A symmetric three-node network is 

considered with a sinusoidally varying link, a nearly 

constant link and a non-existent link as shown in Figure 1. 
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Results depicted in Figure 2 demonstrate that our algorithm 

tracks both the varying and nearly constant (including zero) 

parameters well with minimal error. Table 1 compares the 

average RMS error for our method with the conventional 

sliding window approach for multiple samples of small 

randomly generated networks of different sizes. It can be 

noted that our proposed tracking scheme consistently 

outperforms by always producing lower RMSE. 

 

4. EXPERIMENTAL DATA 

 

BOLD time-series data from subjects in a resting state is 

obtained for five regions of interest (ROIs) corresponding to 

motor function, a Siemens Trio 3T scanner. Their 

abbreviations and MNI (Montreal Neurological Institute) 

coordinates are given in Table 2. Preprocessing involves 

slice time/motion corrections, normalization, 8-mm 

smoothing kernel, and low-pass filtering (0.009 – 0.08 Hz).  

Our algorithm is applied on a selected data set whose 

tracking results are displayed in Figure 3. Strong interaction 

is observed between nodes 1 and 3, and 2 and 3 as expected, 

as they are known to have strong functional 

connectivity[26]. Changes in interaction strengths are seen 

which may correspond to different mind states of the subject 

during data acquisition. This dynamic response merits 

further investigation and opens avenues for comparing with 

networks arising during task-based experiments as well as 

contrasting network information from healthy volunteers 

and patients.  

Next, data from 22 subjects is analyzed and the mean 

values obtained for all links are shown in Table 3. As 

expected, the computed interaction between left pre and post 

central gyrus is much stronger than between left and right 

gyrus, and Vermis lobule is very weakly connected to the 

left gyrus.   

Table 2: Five ROIs of motor function and their co-ordinates 

ROI Abbreviation ROI Area MNI 

Coordinates 

1 PreCG_L Left pre-central 

gyrus 

[-36, -22, 64] 

2 PreCG_R Right pre-central 

gyrus 

[60, 8, 28] 

3 PoCG_L Left post-central 

gyrus 

[-40, -26, 52] 

4 Ver_6 Vermis lobule 6 [6, -62, 20] 

 

Table 3: Mean values of interaction parameters 

Interaction parameter         Mean value 

𝝋𝟏𝟐 -0.21 

𝝋𝟏𝟑 1.09 

𝝋𝟏𝟒 0.09 

𝝋𝟐𝟑 0.29 

𝝋𝟐𝟒 0.39 

𝝋𝟑𝟒 0.08 

 

Figure 3: Tracking results from real data. Black line shows 

estimated mean and grey region shows 1 standard deviation. 

 

5. DISCUSSION 

Our work supports the existence of fluctuations in functional 

connectivity during resting-state and presents an applicable 

and workable methodology to infer these changes. We aim 

to extend our work to larger networks covering more areas 

of the brain as well as infer sparsity in these networks. By 

employing this method within a Particle-MCMC 

framework[27], ‘exact’ Monte-Carlo samples could be 

drawn from 𝑝(𝜙1:𝑇|𝑍1:𝑇), hence resulting in more accurate 

inference, particularly in early periods. Concurrent studies 

could be carried out by obtaining independent data using 

other modalities like EEG in order to verify and 

complement the information obtained by this fMRI analysis.  

In order to gain a better insight into dynamics that 

underlie neuronal activity networks, this analysis would be 

further developed to include hemodynamic response such as 

the non-linear Balloon Model[28][29]. In this way, 

biologically relevant information about effective 

connectivity could be obtained. This work has the potential 

to allow deeper understanding of brain function by allowing 

the study of dynamic brain states. Disorders such as 

schizophrenia, depression and Alzheimer’s have been found 

to alter brain dynamics [16]. Further studies with groups of 

healthy controls and patients are needed to ascertain 

potential benefits.  
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