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ABSTRACT sometimes no longer visible [1]. In the past, motion correc-

In the field of oncology, simultaneous Positron-Emission-t'on of PET data was realized using CT [2] or PET data itself

Tomography/Magnetic Resonance (PET/MR) scanners offe[§]' 'I_'h_e_ emerge of smultaneogs PET/MR system Oﬁ?r new
a great potential for improving diagnostic accuracy. How-pOSSIbIIItIes tq correct.the mot|on-d]storted P.ET datairaga
ever, to achieve a high Signal-to-Noise Ratio (SNR) for a y an MR-derlved motion model which is applied to deform
accurate lesion detection and quantification in the PET/M he PET images [4,5, €. . . -
images, one has to overcome the induced respiratory moti espite various advantag_es_ c_)f MR imaging, the IO.W acquist-
artifacts. The simultaneous acquisition allows perfornd tion speed is one of the limiting factors for capturing three

s . . dimensional deformations over time from a large field of
MR-based non-rigid motion correction of the PET data. It". . . - .
9 view (FOV). Motion-artifact free MR acquisitions are majinl

is essential to acquire a 4D (3D + time) motion model as trained b Il FOVS. low | luti d/
accurate and fast as possible to minimize additional MR scajonstrained by sma S, lowimage resolutions and/or pa-

time overhead. Therefore, a Compressed Sensing (CS) acq ent’'s breathhold ability. For an accurate motion corigct

sition by means of a variable-density Gaussian subsamplin a(t:.z)gff.ZEToia;aberé%h;]eS?.Igt.'sndggrgD ;tlrr:;]ee)r:]ifg_ a
is employed to achieve high accelerations. Reformulatin lon 1 1an gna | rec. *u '

the sparse reconstruction as a combination of the inverse hamic ach|S|t|or_1 ".".'OW'”Q the patient to brea_th fr?e‘?‘?‘
problem with a non-rigid motion correction improves the ac-& retrospective fle>_<|b|l|ty to map th_e data_ to their coirmii
curacy by alternately projecting the reconstruction ressoih motion state aI!owmg a better motion .adjustment, should be
either the motion-compensated CS reconstruction or on rjgvored. But this on the other hand raises the need for a sur-

motion model optimizationin-vivo patient data substantiates rSogate |5|gnal Wh'ﬁh dett_ertmu;?shthe cutrrentt‘rlnDot_mn stat?.
the diagnostic improvement. everal approaches exist which construc images from a

stack of repeated high-resolution 2D dynamic measurements
Index Terms— Compressed Sensing, sparse representgz], high-resolution 3D measurements at multiple brealthho
tion, Motion Correction, Medical Image Processing, PET/MRpositions [8], low-resolution 3D dynamic acquisitions ,[9]
slice stacked 2D dynamic measurements with radial read-
1. INTRODUCTION outs [10] or dynamic 3D hybrid acquisitions with Cartesian-
readout and radial-phase sampling [11]. But all of the befor
The hybrid Positron-Emission Tomography/Magnetic Resomentioned methods cannot meet the requirements for a dy-
nance (PET/MR) technology offers the possibility to congbin namic 4D acquisition on a Cartesian grid.
the high resolution of MR imaging with the high molecular Slice-selective MR navigator scans are often used to deter-
sensitivity of PET in order to acquire quantitative data si-mine the current motion state [8, 12], but they destroy the
multaneously. PET measures the distribution of radioactivimaged steady-state of the transversal magnetizationreThe
substances in the human body over a scan time of severre, self-navigation strategies [13] which extract thetiom
minutes. A positron-emitting radionuclide bound to a bio-information from the acquired data deliver better imaging
logically active molecule (tracer) is injected into the pod results.
The radionuclide decays in metabolic active regions and theor a dynamic (free-breathing) and Cartesian 4D acquisitio
emitted pairs of gamma rays are detected. In oncology thig@ complete coverage of the 4D sampling space for a feasible
allows e.g. for the detection of tumor lesions. By quantifica scan time is not possible. We therefore propose an acquisi-
tion of tracer uptake, the metabolic activity of the tracanc tion scheme which subsamples the phase-encoding direction
be characterized. However, any motion between succegsivend allows the extraction of an MR navigator signal [14]
detected gamma rays leads to a misplacement of the detectsg!f-navigation approach). For a Compressed Sensing (CS)
PET event inside the body. Thus, PET quantification is im-subsampling, the high frequency components are often sam-
paired and lesions in the resulting PET image are blurred angled very sparse leading to a reduction of edge delineation
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which could be very crucial for an accurate MC. Therefore,

we emphasize the use of a so called CoeapedSensing f?g;
Partial Subsampling (ESPReSSo0) mask [15] which compacts ‘180 o
the allowed sampling region to a smaller subset resulting ii l50 B
a denser sampling of the high frequency components. Thik 0

o ; Kk, =
acquisition scheme raises the need for a CS reconstructio * v

In order to improve the reconstruction quality, the motion_. . . . .
information is incorporated into the CS reconstruction byF'g' L. Continously acquired ESPReSSo sampling pat-

" : - Otern @, for a period of 191 s, TNy = 200 ms and

exploiting the spatial-temporal coherence. An improve . L

. . M, nav = 8, M, nav = 1. Navigator samples are indicated by
reconstructed image on the other hand also yields a more prg-¥"21." = =7 "= %

; - L L e solid line in the center.

cise motion model. Hence, a joint CS and MC optimization
may provide better results. Additional reference images fo
the motion estimation, as proposed by Jung et al. [16], are 3. RECONSTRUCTION
not required. Compared to Usman et al. [17] or Cao et al. '
[18] which combine an optical flow method with @n-norm
minimization, our motion model is build up by a non-rigid
registration and a multidimensional B-spline transfoiiorat
incorporated into a reweightéd-norm minimization.

Since the subject is allowed to breath freely and the sam-
ples are acquired randomly over time, each sample must be
mapped to their corresponding motion state dependent on
the navigator signal. This leads to a sub-Nyquist sampled
4D k-space which raises the need for a CS reconstruction.

2. ACQUISITION The inter-state temporal correlation can be incorporated i

a motion-compensated CS reconstruction to improve its per-

Data of the Cartesian sampling space (k-space) is contfermance whilst on the other hand this also enhances the
nously collected while the subject is freely breathing.dcle  accuracy of the multi-resolution non-rigid MC. This moti-
repetition time (TR), a random sample along the two phasevates to reformulate the reconstruction as a coupled motion
encoding gradients, / k. is chosen, encoded and measuredcompensated CS reconstruction and motion model optimiza-
One sample can be measured multiple times, dependent t¢ipn by iteratively projecting the motion modelonto the CS
total scan time, allowing an adjustable sample to motiommeconstruction resp. the reconstructed imagato the image
state assignment during the reconstruction. The samplinggistration: -
distribution in the k-space follows a truncated Gaussieuii

invariant probability density function (pdf) p=argminCcs(p) CS reconstruction
- L - (2)
w2 w? ke \2 ko \2 7 = argmin Cyuc(7) motion model update
pky,kz) ~ o—exp [ ——- L)+ =+ T
2 2 \\ M, M,

A low-resolution image serves as initialization for the ptad

Ju(yMy — ky) +u (7"2 - (;\Z)Q - (JI;[)Q)} ) System

. 3.1. Gating
where M, and M, are the number of phase-encoding steps

alongy andz. The parametew controls the variable sam- Gating is a process of gathering the acquired MR samples
pling density. The heaviside function$) in Eq. (1) truncate into their corresponding motion state, based on the exddact
the Gaussian pdf and apply a two-dimensional ESPReSSwmvigator signals(¢) and according to their distance to the
mask [15]. With ESPReSSo, the sampling region is comgate centroid;,: = 1,. .., N of thei-th motion gatey;

pacted along one phase-encoding direction to a smalleesubs

~+M, while a fully sampled k-space center regiomensures V{ky,k.}: §; = argmaxu (52. +b; (6i41 — 6;) — s, )
the Hermitean symmetry extraction in the reconstruction. ¢ v
EveryTnav, the MR sequence is constrained to acquire a se- -u (S(t)|ky,kz —0; +b; (0; — 6i_1)) i=1,...,Ng (3)
ries of My nav X M nav Samples in the k-space centgr € !

[—@, M'Q-”a"Lkz € [—MZT““, MT'“] which can be ex- The end-expiratory gate centrodgd and the end-inspiratory
tracted during the reconstruction and serve as a naviggtor s gate centroiddy, are placed at th@5-th resp. 5-th per-
nal. This navigator signal captures the currentrespiyatm-  centile of all acquired samples witR (s(t) < ;) = 0.95
tion state as a projection of the moving liver dome over timeresp. P (s(t) < dn,) = 0.05. The remainingVg — 2 gate
and is used to bin the acquired samples in the gating step tentroids are placed according to Lloyd’s algorithm at the
their corresponding motion state. An exemplary continlyous sample cluster centroids. A view sharing blending factor fo
acquired sampling patted. can be seen in Fig. 1. each gaté; < [%, 1] is introduced to flexibly tune the gate
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width, ranging from no overlap{ = %) to completely over- input noise [21]. Furthermore, the ESPReSSo sampling strat
lapping gatesy{; = 1), and thereby adjusting the amount of egy and the motion model update have to be accounted for as
shared samples between two adjacent gates to improve the additional constraint to the linear inverse problem.

SNR at the cost of an increased motion blur. For ESPReSSo, the k-space Hermitean symmeth) =

All acquired Ng 3D MR samples within one gate are col- v*(—k) is exploited and incorporated into the FOCUSS via
lected and form together with th&; gates the 5D ten- a projection-onto-convex-sets (POCS) operation:

sor k-space. The large field-of-view (FOV) enabling the

capture of the complete deformation within the body re- Oz = arg(p)

sults in multiple N. MR receiver coils, each covering a Qip =F " (F (|p| o explin))(I — @) + ®v) (7)
different part of this FOV. Thus a multi-coil 6D k-space

v € CNuxNexN:xNexNsxNe jg gbtained from which the Wherea o b denotes the Hadamard product. The solution to
image needs to be reconstructed. Moreover, the binary sark- (7) can be considered as finding the intersection point
pling pattern for each motion stade can be obtained by bin- Q1 (1922 between th_e two convex sefly and€s in H|Ibe_rt

ning and mapping the continuously acquired pat@gn The spaceH of all possuble complex images. A phase_ estimate
PET data is also gated according to the navigator sigftal  ©f the symmetrically sampled MR poingsforms the first set
and the gate boundarif% — b; (5; — 6;_1), 6; +bi (541 — 6:)). Q4 which is propggated towa_rds_a data consistency tesm
The sets constrain the resulting image to lie in a closed con-
vex subset off. Reformulating the projection operation (7)
allows framing a convex constraint for the CS minimization
The linear CS reconstruction problem can be expressed in malgorithm [22]:

trix form as . . o
v= Ag = ®FUq (4) (Br+ (I —@)v")=05-F (p oe* @ +p)  (8)

wherey = vec(r) € CN denotes the stacked subsampledThe motion information will be considered by minimizing
multi-coil k-spacep € CM, M = M,M,M.NgNsN, be- the residuerres between the end-expiratory staie and the
ing the unknown image with itd(-sparse representatign  fémainingp,i = 2,..., Ng states. For a perfect spatial-
under transformation sparsiy. The Karhunen-Loéve trans- témporal matching, i.e. optimal motion modejsthe residue
formation acts as sparsifying transformation by compactin Ne

the sample energy within one gate and between the differ- €res = Zﬁl - (&) (9)
ent motion states onto the most relevant on@s¥ are the —

ESPReSSo subsampled Fourier coefficients which yields th% . - ,
overall system matrid — ®FW € CN*M with N < M. In S ould be small. Additionally, one can utilize the multiico
the noise-free case, a sparse solution to the underde'tevﬂimin!nformatlon reallz_ed throu_gh the kerrgl representlr_lg Ilnear_
linear system Eq. (4) can be found as inter-channel welght_s; to improve the reconstruction duali
as proposed by Lustig et al. [23].
min ||¢||; s.t.v = Ag (5) The overall cost function of the constrained optimization
4 - - problem can be constructed by means of Lagrangian multi-

f plier as a regularized FOCUSS

3.2. CS reconstruction

where|| - ||1 is thel;-norm. Due to the non-smooth nature o
thsﬁl-rjo_rn"_l, _in ct(;‘réterast to o_ther app_rtoh?ches<[1i)], we rt(;cover Ces(q; ) = |lv — @g\ng”g + N\ ||g|\§
p by minimizing thef,,-quasi-normwith) < p < 1 using the e 2ip
FOcal Underdetermined System Solver (FOCUSS) algorithm + A2 [F (W g oetEt WQ)
[20]. It uses an iterative affine scaling transformation TAS —(Bv+ T —-®)v) |3
realized through the weighting mat¥¥ at iterationk Ne
Y eWe, - (\IJWQZ_> 112
W, = diag (|p,_,I") () =

. N + M || (BG —I) Wyl (10)
Forp = 0.5, FOCUSS asymptotically minimizes tidg-norm _ N _ - _
and hence converges to a sparse solution near the initializwith empirically determined values,, A, A3, A4 > 0. Since
tion [20]. Therefore, a low-resolution image provides a suf Ccs(q) € C" is continuously differentiable, an optimal so-
ficient initialization. The optimization task in Eq. (5) can lution can be reached by a linear conjugate gradient method.
be formulated as a reweightég-norm minimization which  Using the Wirtinger derivativ& Ccs(q) = V- Ces(q, ¢*) al-
tries to find the optimal sparse imagevith p = ¥Wgqun-  lows the calculation of the complex-valued gradient vector
der a data consistency constraint. In the presence of noiséhe extraction of the most significant sample for each motion
the data consistency term in Eq. (4) must be relaxed towardstate and a root sum of squares channel combination yields
|z — Ag|2 < e wheree denotes the standard deviation of thethe reconstructed 4D imagee RMy M xM-xNe,
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3.3. Motion model update 5. RESULTS AND CONCLUSION

If one inspects a normal breathing cycle, the lowest motioRq reconstructed MR image of the end-expiratory state
burden, i.e. the longest motion-stable time interval can b(\?vith the corresponding deformation fielﬂ;( ) manbin
identified as the end-expiratory state with the correspandi P 9 P pping

. o . from the end-inspiratory state to the end-expiratory state
imagep. . All remaining states shall be registered and trans- P . . . .
1 - . . can be seen in Fig. 2 (image is not distortion corrected).
formed byNg — 1 parametric and non-rigid transformations , . - . .
: . ) .~ A line profile through a moving lesion of the coronal PET
7; to the end-expiratory state in order to find the optimal.

displacement field); (p) = 7,(p) — p for each spatial voxel image in Fig. 3 visualizes the motion burden and its qual-
P i\p) = Ti\p) ~ D P ity enhancement by means of motion correction with values

p = [z,y,2]". The MR-derived displacement field is used o e non-corrected/gated/corrected PET of the FWHM =
for the subsequgnt motion correcgon of the gated PET data.7.6/5.5/5.4 px and the PAC =7760,/12020,/23920 Bg/ml.
An updated motion modet} of motion stat%czleydbfh?er_"’ed In Fig. 4 the line profiles clearly indicate the improvement
together with th_e _re(_:o_nstructed Imagec Y regarding delineation (FWHM) and quantification (PAC).
2,..., Ne by minimizing the cost function The motion-corrected PET image has a similar FWHM as the
#; = arg min Cyc (Ti P p‘) — arg min —Syy (Tv 0 p,> gated PET indicating the functioning of the motion correc-
Ti S T Ve S tion, but a higher PAC, since all counts from different gates
. o ] ) (11) are combined into the motion-corrected PET. Compared to
under an image similarity metri€,,, defined as the Normal- ihe non-corrected PET image, both FWHM and PAC are im-
ized Mutual Information with entropy definition accordirgy t proved by29% and26%, respectively.

Mattes et al. [24]. It uses B-spline Parzen windows to calcuThe proposed motion correction framework is able to detect

late the joint probabilities of, andp,. - . . motion fast and accurately, to build up a MR-derived motion
The motion modet; uses a parametrized cubic B-spline ap-mode| during CS reconstruction and to correct the PET im-
proach as proposed in [235] ages which can result in an enhanced diagnostic accuracy and
p—p confidence.
) =p+ 3 wibs (— U—k) (12)
ngT L] 4
p, are the control points of the control point Séwith spac- ‘

ing o, w,, are the B-spline coefficient vectors over which Eqg. §
(11) optimizes angs;(p) are the cubic multidimensional B-
spline polynomials.

Eqg. (11) can be solved by a Quasi-Newton Broyden-Fletcher
Goldfarb-Shanno algorithm. A multi-resolution pyramid ap
proach based on a downsampling and Gaussian filtering a
proposed by Lester and Arridge [26] is used to reduce the
data and transformation complexity.

(a) non-corrected (b) gated

' A

(c) corrected
4. MATERIALS AND METHODS

Fig. 2 MR image p with Fig. 3: PET images showing a
Coronalin-vivo patient data was acquired or8&@ PET/MR  overlayed deformation fieltiver lesion (bright spot) with
scanner (Biograph mMR, Siemens) using a 3D spoiled grag, (1_7)_ line profiles indicated by the
dient echo sequence with TE 23 ms, TR =2.60 ms, dashed lines.
Head-Feet frequency encoding direction, Left-Right phase
encoding direction, FOV 500 x 500 x 360 mm? and a matrix X 10" ‘
size 0f256 x 256 x 72. Data was acquired for a total scan ‘ ;‘\ —non-corrected
time of 300 s with Tyay = 200 ms. *gated
The images were reconstructed offline in Maflasnd the corrected
registration was performed using elastix [27].
The feasibility of the proposed method is shown for a mo-
tion corrected PET/MR image of a patient with liver metas- TSN
tases. The corrected PET image is evaluated against the .. : 0 5 20 25“ : 30
non-corrected and the end-expiratory gated PET image-(serv Pixel [px]
ing as a ground truth for a motion-free PET) in terms of PET

activity concentration (PAC) and Full width at half maximum Fig- 4: Line profiles through a moving liver lesion of the non-
(FWHM) of a moving liver lesion. corrected, gated and corrected PET images.
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