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Abstract—X-ray tomography is increasingly being used for
4D spatio-temporal imaging of material samples at micron and
finer scales. However, the temporal resolution of widely used
4D reconstruction methods is severely limited by the need to
acquire a very large number of views for each reconstructed
3D volume. In this paper, we present a time interlaced model-
based iterative reconstruction (TIMBIR) method which can
significantly improve the temporal resolution of reconstructions.
TIMBIR is a synergistic combination of two innovations. The
first innovation, interlaced view sampling, is a novel approach
to data acquisition which distributes the view angles more
evenly in time. The second innovation is a 4D model based
iterative reconstruction algorithm (MBIR) which can produce
time resolved volumetric reconstructions of the sample from the
interlaced views. Reconstructions of simulated data indicate that
TIMBIR can improve the temporal resolution by an order of
magnitude relative to existing approaches.

I. INTRODUCTION

Four-dimensional computed tomography (4D-CT) using
synchrotron X-rays is enabling scientists to study a wide
variety of physical processes [1], [2] in the material sciences.
However, in-situ 4D synchrotron imaging still remains a major
challenge owing to limitations on the data acquisition rate [1].
The traditional approach to 4D-CT is to acquire a sequence of
parallel beam projections of the object, which is rotated at a
constant speed, at progressively increasing equi-spaced view
angles (henceforth called progressive view sampling). Typi-
cally, the projections in each π radians rotation are grouped
together and reconstructed into a single 3D volume using
an analytical reconstruction algorithm such as filtered back
projection (FBP) [3], [4] or Fourier domain reconstruction
methods [5]–[7]. Since the number of views required for
Nyquist spatial sampling is approximately the number of
sampled pixels in the sensor’s cross-axial field of view [3],
the data acquisition rate becomes a limiting factor on the
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temporal resolution of the reconstructions. In order to increase
the temporal resolution, either the number of projections per
rotation can be reduced or the range of view angles used
for reconstruction can be decreased. However, in both the
cases the signal is under sampled and analytic reconstruction
algorithms produce substantial artifacts [3], [8]–[10].

In order to improve the quality of reconstruction, several
new sampling strategies based on optimal Nyquist sampling
[11]–[15], compressed sensing [16], and other techniques [17],
[18] have been proposed for other tomographic applications.
An alternate approach to improving reconstructions is to use
more advanced model-based iterative reconstruction (MBIR)
methods [19]–[22], which are based on the estimation of
a reconstruction which best fits models of both the sensor
measurements (i.e., the forward model) and the object (i.e.,
prior model). In the context of medical CT, several authors
have also shown that modeling the temporal correlations [23]–
[27] in addition to modeling the spatial correlations improves
the quality of 4D MBIR reconstructions.

In this paper, we propose an approach to 4D reconstruction
of time varying objects, which we call time interlaced model
based iterative reconstruction (TIMBIR). TIMBIR is the syn-
ergistic combination of a novel interlaced view sampling tech-
nique and a 4D MBIR algorithm. In the new interlaced view
sampling method, all the views that are typically acquired over
half a rotation using progressive view sampling are instead
acquired over multiple half-rotations. In order to reconstruct
the data acquired using this technique, we propose a new 4D
MBIR algorithm. In addition to modeling the measurement
noise and spatio-temporal correlations in the 4D object, the
MBIR algorithm reduces ring and streak artifacts by modeling
the detector non-idealities [28], [29] and measurement outliers
caused by high energy photons (called “zingers”) [21]. We
adapt our forward model introduced in [21] for synchrotron
tomography to the current 4D framework and combine it with
a modified qGGMRF [30] based prior model and formulate
the MBIR cost function.

II. INTERLACED VIEW SAMPLING IN TOMOGRAPHY

In order to achieve Nyquist sampling for each 3D volume
in synchrotron X-ray tomography, it is typically necessary to
collect Nθ = Np progressive views where Np is the number
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of sampled pixels perpendicular to the axis of rotation. In
the traditional approach, all Nθ progressive views are taken
in sequence while the sample is rotated continuously over π
radians (see Fig. 1(a)). The object is then reconstructed at a
temporal rate of Fs = Fc/Nθ where Fc is the data acquisition
rate.

In contrast to the traditional approach, we propose an
interlaced view sampling method where each frame of data
consisting of Nθ distinct views are acquired over K interlaced
sub-frames as shown in Fig. 1(b). Each sub-frame of data then
consists of Nθ/K equally spaced views, but together the full
frame of data contains all Nθ distinct views of the object. For
a continuously rotating object, the formula describing the view
angle as a function of the discrete sample index, n, is given
by

θn =

[
nK + Br

(⌊
nK

Nθ

⌋
mod K

)]
π

Nθ
, (1)

where K is a power of 2, b = Br(a) is the bit-reverse
function which takes the binary representation of the integer
a and reverses the order of the bits to form the output b [31].
Thus, in interlaced view sampling all the distinct Nθ views
are acquired over a Kπ radians rotation of the object. This
requires spinning the object at K times the typical rotation
speed while maintaining the same data acquisition rate. The
object is then reconstructed at a temporal rate of Fs = rFc/Nθ
by reconstructing r time samples every frame. In TIMBIR,
we typically set the parameter r equal to the number of sub-
frames, K.

(a) K = 1, Nθ = 16 (b) K = 4, Nθ = 16

Fig. 1. Illustration of interlaced view sampling pattern for different values of
K. (a,b) are plots of θnmod(π) vs. time index, n, for K = 1 and K = 4.
The arrows show the relative difference between the angular values across
sub-frames for the interlaced data acquisition scheme.

III. FORMULATION OF MBIR COST FUNCTION

In synchrotron X-ray tomography, we typically reconstruct
the attenuation coefficients of the object from the acquired
data. In order to reconstruct the object, we use the MBIR
framework. The MBIR reconstruction is given by the iterative
minimization of the following optimization problem,(

x̂, φ̂
)

= argmin
x,φ

{− log p(y|x, φ)− log p(x)}, (2)

where p(y|x, φ) is the pdf of the projection data, y, given the
reconstruction, x, and the unknown system parameters, φ, and
p(x) is a pdf for the 4D object.

A. Measurement Model

We begin by deriving a likelihood function p(y|x, φ) for
the projection data, y, from a time varying object, x. We
model each voxel of the object as an independent piecewise
constant function in time such that there are r equi-length re-
construction time samples in each frame. Thus, the projections
ranging from (j − 1)Nθ/r + 1 to jNθ/r are assumed to be
generated from the jth time sample. The vector of attenuation
coefficients of the object at the jth time sample is denoted by
xj .

Using the synchrotron X-ray tomography model we intro-
duced in [21], if λn,i is the measurement at the ith detector
element and nth view and if λD,i is the measurement in the
absence of the sample, then an estimate of the projection
integral is given by yn,i = log

(
λD,i
λn,i

)
− di where di is an

unknown offset error. Let βT,δ(z) be the generalized Huber
function [21] of the form

βT,δ(z) =

{
z2 |z| < T

2δT |z|+ T 2(1− 2δ) |z| ≥ T.
(3)

where δ and T are parameters of the Huber function. In our
model, the parameters of the generalized Huber function are
chosen such that 0 < δ < 1 and T > 0. The Huber function
is non-convex in this range of parameter values. If we denote
y to be the vector of all projections, yn,i, x to be the vector
of attenuation coefficients at all time steps, then by adapting
the 3D forward model presented in [21] to 4D we obtain the
following likelihood function,

− log p(y|x, d, σ) =

1

2

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

βT,δ

(
(yn,i −An,i,∗xj − di)

√
Λn,i,i

σ

)

+ML
Nθ
r

log(σ) + c(y), (4)

where nj = jNθr + 1, L is the total number of time samples
in the reconstruction, An,i,∗ is the ith row of the forward
projection matrix An, Λn is a diagonal matrix modeling the
noise statistics, M is the total number of detector elements,
and c(y) is a constant that will be ignored in the subsequent
optimization. The variance of the projection measurement,
yn,i, is inversely proportional to the mean photon count and
hence we set Λn,i,i = λn,i [32]. Since, typically λn,i is not
equal to the photon count but is proportional to the photon
count, there exists an unknown constant of proportionality
σ such that λn,i

σ2 is the inverse variance of the projection
measurement, yn,i.

B. Prior Model

We use a q-generalized Gaussian Markov random field
(qGGMRF) [30] based prior model for the voxels. The prior
model is used to regularize the reconstruction in time as well as
space. Using this model, the logarithm of the density function
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of x is given by

− log p(x) =

L∑
j=1

∑
{k,l}∈N

wklρs(xj,k − xj,l)

+

P∑
k=1

∑
{j,i}∈T

w̃jiρt(xj,k − xi,k) + constant, (5)

where ρs(∆) =
∆t∆

3
s

∣∣∣ ∆
∆sσs

∣∣∣2
cs +

∣∣∣ ∆
∆sσs

∣∣∣2−p , ρt(∆) =
∆t∆

3
s

∣∣∣ ∆
∆tσt

∣∣∣2
ct +

∣∣∣ ∆
∆tσt

∣∣∣2−p ,
and xj,k is the kth voxel of the object at time sample j, P
is the total number of voxels in each 3D time sample, N
is the set of all pairwise cliques in 3D space (all pairs of
neighbors in a 26 point spatial neighborhood system), T is
the set of all pairs of indices of adjacent time samples (2
point temporal neighborhood system), p, cs, ct, σs and σt are
qGGMRF parameters, ∆s is a parameter proportional to the
side length of a voxel and ∆t is a parameter proportional to the
duration of each time sample in the reconstruction. The weight
parameters are set such that wkl ∝ |k− l|−1, w̃ji ∝ |j− i|−1,
and normalized so that

∑
l∈Nk wkl +

∑
i∈Tj w̃ji = 1, where

Nk is the set of all spatial neighbors and Tj is the set of all
temporal neighbors of voxel xj,k. The terms ∆s and ∆t in the
prior model ensure invariance of the prior to changing voxel
size [33].

C. MBIR Cost Function

By substituting (4) and (5) into (2), we get the following
cost function,

c(x, d, σ) = MLNθ log(σ)/r

+
1

2

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

βT,δ

(
(yn,i −An,i,∗xj − di)

√
Λn,i,i

σ

)

+

L∑
j=1

∑
{k,l}∈N

wklρs(xj,k−xj,l)+
P∑
k=1

∑
{j,i}∈T

w̃jiρt(xj,k−xi,k). (6)

The reconstruction is obtained by jointly minimizing the
cost, c(x, d, σ), with respect to x, d and σ. Additionally we
constraint

∑M
i=1 di = 0, to prevent any shift in the estimated

value of the reconstruction.

IV. OPTIMIZATION ALGORITHM

The cost function (6) is in general non-convex in x, d and
σ. Minimizing the current form of the cost function given
by (6) is computationally expensive. So, we instead adapt the
functional substitution based optimization algorithm in [21]
to efficiently minimize the current form of the cost function
(6). Our method also ensures monotonic decrease of the cost
function (6).

We also implemented the non-homogeneous iterative co-
ordinate descent (NHICD) [19] for the voxel updates and a
multi-resolution initialization method to improve the conver-
gence speed of the algorithm. To prevent the algorithm from

converging to a local minimum, we do not update the offset
error, di, and variance parameter, σ, at the coarsest scale of
multi-resolution.

Progressive/FBP Progressive/MBIR
Phantom r=K=1, Nθ=256 r=K=1, Nθ=256

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 2. Reconstructions of a progressive view dataset using FBP and MBIR.
The first and second rows show a 2D slice of the object in the u − v
plane at different times. The third row shows a v-axis slice of the object
vs. time. The first column (a,d,g) shows the phantom. Reconstruction (r = 1)
of a progressive view dataset with Nθ = 256 using FBP is shown in the
second column (b,e,h) and using MBIR is shown in the third column (c,f,i).
Reconstruction of rapidly time-varying objects using conventional methods
results in poor temporal resolution.

V. EXPERIMENTAL RESULTS

In this section, we compare FBP and MBIR reconstructions
of simulated datasets using both the traditional progressive
view sampling and the proposed interlaced view sampling
methods. First, a time varying phantom (see Fig. 2 (a,d,g))
in 4D is generated using the Cahn-Hilliard equation [34]
which models the process of phase separation in the cross-
axial plane (u − v axes). The phantom is representative of
the phenomenon that we are interested in studying in 4D.
The two phases of the object have attenuation coefficients
of 2.0 mm−1 and 0.67 mm−1 respectively. The phantom is
assumed to have a voxel resolution of 0.65×0.65×0.65 µm3

and a size of 16×1024×1024. The phantom is then sampled
in time at the data acquisition rate, Fc, and the projections
are generated by forward projecting the sampled phantom at
the appropriate angles. To simulate detector non-idealities in a
synchrotron measurement system, we add an offset error di to
the projection yn,i at every nth view. To simulate the effect of
zingers, we randomly set 0.1% of the projections, y, to zero.
The simulated value of the variance parameter is σ2 = 10.
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The simulated sensor has a resolution of Np = 256 pixels
in the cross-axial direction and 4 pixels in the axial direction.
The reconstruction has a size of 4 × 256 × 256 voxels and
a spatial resolution of 2.6 × 2.6 × 2.6 µm3. The temporal
reconstruction rate is Fs = rFc/Nθ where r is the number
of reconstruction time samples in a frame, Fc is the data rate,
and Nθ is the number of distinct views. For computing the
root mean square error (RMSE) between the reconstruction
and the high resolution phantom, the reconstructions are up
sampled in time to the data rate Fc using cubic interpolation.
Also, since the phantom has higher spatial resolution than the
reconstructions, the phantom is down-sampled by averaging
over blocks of pixels to the reconstruction resolution before
comparison. The regularization parameters in the prior model
are chosen such that they minimize the RMSE between the
reconstruction and the phantom. We set p = 1.2, δ = 0.1 and
T = 4. The algorithm stops when the percentage change in
average magnitude of voxel updates is less than 0.1%.

Progressive/MBIR Interlaced/FBP TIMBIR
r=K=1, Nθ=32 r=K=8, Nθ=256 r=K=8, Nθ=256

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 3. TIMBIR vs. other methods for high temporal resolution reconstruction.
The first and second rows show a 2D slice of the object in the u− v plane at
different times. The third row shows a v-axis slice of the object vs. time. The
first column (a,d,g) shows the MBIR reconstructions (r = 1) of progressive
views with Nθ = 32. Reconstruction (r = 8) of interlaced views with K =
8, Nθ = 256 using FBP is shown in the second column (b,e,h), and TIMBIR
is shown in the third column (c,f,i).

The traditional approach to 4D synchrotron tomography is
to use progressive view sampling and an analytic reconstruc-
tion algorithm such as FBP. So, we generate a dataset of
progressive views with Nθ = 256 and reconstruct it at a rate of
Fs = Fc/256 by reconstructing r = 1 volumetric time sample
every frame. The reconstruction using FBP is shown in Fig.

TABLE I
RMSE BETWEEN THE RECONSTRUCTION AND THE PHANTOM.

RECONSTRUCTION USING TIMBIR HAS THE LOWEST RMSE AMONG ALL
THE METHODS.

Description Parameters RMSE (mm−1)
Nyquist Progressive,

Slow FBP r = 1,K = 1, Nθ = 256 0.3376

Nyquist Progressive,
Slow MBIR r = 1,K = 1, Nθ = 256 0.2814

Sub-Nyquist
Progressive, Fast MBIR r = 1,K = 1, Nθ = 32 0.2554

Interlaced,
Fast FBP r = 8,K = 8, Nθ = 256 0.6035

Interlaced,
Fast MBIR (TIMBIR) r = 8,K = 8, Nθ = 256 0.2193

2 (b,e,h) and using MBIR is shown in Fig. 2 (c,f,i). When
compared to FBP, MBIR produces lower noise reconstructions
with reduced artifacts while preserving the spatial resolution
(Fig. 2 (b,e) and Fig. 2 (c,f)). However, from Fig. 2 (h,i) we
can also see that neither FBP nor MBIR are able to reconstruct
temporal edges accurately.

Next, we investigate different methods of increasing tem-
poral resolution. First, we reduce the number of progressive
view angles to Nθ = 32 and reconstruct it at a rate of
Fs = Fc/32 using MBIR (r = 1) . However, due to the severe
under sampling of views the MBIR reconstruction suffers
from severe loss in quality (Fig. 3 (a,d,g)). This illustrates
that merely reducing the number of views in every π radians
rotation and using an advanced reconstruction algorithm is
insufficient for our problem. Next, we generate a dataset of
interlaced views in which each frame of Nθ = 256 angles is
interlaced over K = 8 sub-frames. We then reconstruct it at
a rate of Fs = Fc/32 by reconstructing r = 8 time samples
every frame. Thus, this reconstruction has 8 times the temporal
resolution of the conventional approach. The reconstruction
using FBP is shown in Fig. 3 (b,e,h), and TIMBIR is shown
in Fig. 3 (c,f,i). Thus, we can see that reconstructing the
interlaced views with FBP results in extremely poor quality
reconstruction (Fig. 3 (b,e)). In contrast, TIMBIR with inter-
laced views results in a substantially better reconstruction of
the object with minimal artifacts (Fig. 3 (c,f)). Furthermore,
we can see that TIMBIR is able to more accurately reconstruct
temporal edges (Fig. 3 (i)) than any other method (Fig. 3
(g,h) and Fig. 2 (h,i)). The RMSE between the reconstructions
and the ground-truth shown in Table I support these visual
conclusions. Thus, TIMBIR with its synergistic combination
of interlaced sampling and MBIR reconstruction, results in
a much higher quality reconstruction than either method can
achieve by itself. The run time of the TIMBIR reconstruction
algorithm was 46.6 minutes using 16 processor cores.

VI. CONCLUSION

In this paper, we propose a novel interlaced view sampling
approach which when combined with a 4D MBIR algorithm
was able to achieve a synergistic improvement in recon-
struction quality for synchrotron X-ray CT. By comparing
reconstructions of simulated data using different methods we
showed that TIMBIR can improve temporal resolution by an
order of magnitude relative to existing approaches.
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