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ABSTRACT 

 

Modeling a temporal image sequence as a super-position 

of sparse and low-rank component stems from studies in 

principal component pursuit (PCP). Recently this 

technique was applied for dynamic MRI reconstruction 

with two modifications. First, unlike the original PCP, the 

problem was to recover the image sequence from under-

sampled measurements. Second, the sparse component of 

the signal was not sparse in itself but in a transform 

domain. Recent studies in dynamic MRI reconstruction 

showed that, instead of using a fixed sparsity basis, better 

recovery results can be achieved when the sparsifying 

dictionary is adaptively learned from the data using Blind 

Compressed Sensing (BCS) framework. In this work, we 

demonstrate that learning the sparsity basis using BCS 

like techniques improve the recovery accuracy from PCP 

when applied to dynamic MRI reconstruction problems. 

 

Index Terms— Principal Component Pursuit, Dictionary 

Learning, Compressed Sensing, Dynamic MRI. 

1. INTRODUCTION 

Principal component pursuit (PCP) models a signal as a 

superposition of sparse and low-rank components. 

Assuming a practical noisy scenario, this is expressed as 

follows [1]: 

X S L n         (1) 

where S is the sparse component, L is the low-rank 

component and n is the noise assumed to be Normally 

distributed. 

In PCP, the recovery of the sparse and low-rank 

components is posed as an optimization problem. The 

unconstrained form of the problem is as follows: 
2

1 21 *,
min ( ) ( )

FL S
X L S vec S L        (2) 

Here the nuclear norm 
*
  enforces a low-rank penalty on 

L and the l1-norm enforces sparsity on S. Conditions 

under which such solutions can be recovered is explained 

in detail in [1, 2]. 

The PCP model was used in [3] to separate 

foreground from background in video sequences. The idea 

was that each frame (vt) can be expressed as a 

superposition of foreground (ft) and background (bt), i.e. 

t t tv f b n         (3) 

This was succinctly expressed as: 

V F B N         (4) 

where 1[ | ... | ]TV v v , 1[ | ... | ]TF f f and 1[ | ... | ]TB b b . 

The background does not change much over time, the 

columns of B are correlated and hence B can be modeled 

as a low-rank matrix. The foreground is small, therefore 

the matrix F is supposed to be sparse. Based on this logic, 

it was shown in [3] that PCP can be used for background 

foreground separation.  

The same intuition applies to dynamic MRI 

sequences. The active region (foreground) occupies a 

small region of the field of view, e.g. in functional MRI 

there is only a small portion of the brain that is active. 

This active region can be modeled as a sparse component. 

Even if the active area is not small (e.g. in cardiac 

perfusion), it can be sparsely represented in a transform 

domain. The background is almost static and as before 

can be modeled as a low-rank matrix. This assumption 

forms the basis of sparse plus low-rank dynamic MRI 

reconstruction [4].   

The problem in dynamic MRI reconstruction is more 

challenging because the K-space is sub-sampled. For each 

frame, the data acquisition is modeled as: 

t ty RFx         (5) 

Here xt represents the t
th

 frame, F is the Fourier mapping 

between the spatial domain and the K-space, R is the sub-

sampling operator in the K-space, yt is the acquired K-

space data. When the yt’s and xt’s are stacked as columns 

of a Y and X, (5) is represented as, 

Y RFX N        (6) 

Using the notation in (1), the dynamic MRI sequence can 

be expressed as a superposition of sparse and low-rank 

components. Therefore, we have, 

( )Y RF S L N       (7) 
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In [4] it is assumed that the signal is sparse in a 

transform domain (Ψ). Therefore recovery is framed as: 
2

1 21 *,
min ( )

FL S
Y RF L S S L        (8) 

It was shown in [4] that the low-rank plus sparse 

technique yields better results than state-of-the-art 

methods in dynamic MRI reconstruction.  

Following the success of dictionary learning 

techniques in various image processing tasks a few 

studies proposed learning an empirical sparsity basis for 

dynamic MRI reconstruction [5, 6]. However there is one 

major challenge in learning sparsifying dictionaries for 

dynamic MRI. Typically dictionaries are learnt for image 

patches. But such patch based learning cannot be 

employed for dynamic MRI reconstruction. The size of 

the dynamic MRI sequence is large. To learn dictionaries 

for such large datasets would require a huge training 

sequence; otherwise the learnt dictionary would not be 

robust. Leaving aside computational limitations, acquiring 

such huge dynamic MRI training sequences for learning 

spraifying dictionaries is not practical.  

To overcome the limitations of traditional dictionary 

learning, recent studies in dynamic MRI reconstruction 

relies on Blind Compressed Sensing (BCS) [7]. BCS 

learns the sparsifying dictionary in a bootstrapped 

fashion, i.e. it learns the dictionary from the data itself. It 

learns the dictionary simultaneously with sparse signal 

estimation. The first work in dynamic MRI reconstruction 

based on BCS [8], learnt the sparsifying dictionary in the 

temporal direction. The recovery was modeled as: 
2 2

1 21,
min ( )

F FD Z
Y RFZD vec Z D       (9)   

Here X=ZD, Z being the sparse coefficients and D the 

sparsifying dictionary in temporal direction. 

A more recent study in BCS based dynamic MRI 

recovery [9], uses an analysis prior BCS formulation, i.e. 

assumes DX to be sparse. Moreover it imposes a low-rank 

penalty on X, following prior studies [10-12]. The 

assumption of using a low-rank penalty is that the 

dynamic MRI frames are temporally correlated and hence 

the columns of X are not independent. The ensuing 

optimization problem is: 
2 2

1 2 21 *,X
min

F FD
Y RFX DX D X       (10) 

The recovery results from [9] showed improvement over 

state-of-the-art techniques in dynamic MRI 

reconstruction. In this work we will abuse the notation of 

1
M , even though M is a matrix we will be meaning a 

vector l1-norm on its vectorized version. 

In this work we plan to combine the best of both 

worlds. We use the low-rank plus sparse model for 

dynamic MRI, but we will learn the sparsity basis for the 

sparse component using BCS techniques. The proposed 

approach is outlined in the following section. The 

experimental results will be described in section 3. Finally 

the conclusions of the work will be discussed in section 5. 

2. PROPOSED APPROACH 

The data acquisition model for dynamic MRI is given in 

(6). We repeat it for the sake of convenience.  

Y RFX N   

Our signal model follows the prior study [4], i.e. we 

assume the dynamic MRI sequence to be a superposition 

of sparse and low-rank components. This is expressed in 

(7). For the sake of convenience we repeat the signal 

model: 

( )Y RF S L N    

In [4], it is assumed that the sparse component has a 

sparse representation in a fixed transform domain. In this 

work, we follow the BCS framework and learn the 

sparsifying basis. We assume S to be sparse in a 

dictionary D, i.e. S=DZ where Z is sparse; here D is learnt 

adaptively from the data. We propose to recover the 

sparse and low-rank components by solving the following 

optimization problem: 
2 2

1 2 31 *, ,
min ( )

F FL Z D
Y RF L DZ Z L D        (11) 

The l2-norm penalty on the dictionary regularizes the 

estimate.  

Usually Split Bregman techniques are popular in 

solving such multiple penalty optimization problem [13]. 

However, such variable splitting techniques require 

optimizing a large number of hyperparameters. There is 

no good way to find these values apart from trial and 

error. We want to avoid such heuristic parameter tuning. 

Therefore we follow a straight-forward majorization 

minimization approach to solve (11). This approach was 

used previously [14] to solve the generalized principal 

component pursuit problem.  

2.1. Optimization Algorithm 

We follow the majorization minimization technique 

(MM) outlined in [15]. Our problem is to minimize (11). 

We first look at the simple least squares minimization 

problem: 
2

, ,
min  ( )

FL Z D
Y RF L DZ      (12) 

MM decouples (12) via the Landweber iterations. In 

every iteration (k) the Landweber update is given by: 

1 1 1 11
( ) ( ( ))k k T k kB L D Z RF y RF L DZ

a

         (13) 

where a>max eigenvalue((RF)
T
RF). Since F is a Fourier 

transform defined on the Cartesian grid, a=1 for our 

problem. 

The Landweber iterations allow (12) to be written in 

the following form for the k
th

 iteration, 
2

2, ,
min  
L Z D

B L DZ      (14) 

where B has been defined in (13). 

Therefore using the Landweber iterations, we can 

express our original problem (11) for every iteration in 

the following form, 
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2 2

1 2 31 *, ,
min

F FL Z D
B L DZ Z L D        (15) 

Since the sparse and the low rank components are 

separable, the Method of Alternating Directions can be 

used to decompose (15) into the following two problems, 
2 21

1 312,
, mink k k

FZ D
Z D B L DZ Z D       (16) 

2

2 *2
min  k k k

L
L B L D Z L       (17) 

Problem (17) is a nuclear norm minimization 

problem. Well known techniques are available to 

iteratively solve it. We employ the singular value 

shrinkage method [16]. The step is defined as follows:  

 

/2 ( ) ,  where k T k k TL U Soft V B D Z U V      

/2 ( )Soft  denotes the singular values after soft 

thresholding, i.e. 

/2 ( ) ( ) max(0, ( ) / 2)Soft diag diag       . 

 

Solving (16) is problematic. It is a bilinear non-

convex problem. The best we can do is to update D and Z 

alternately. This is given by: 
2

1 1

1 12
mink k k

Z
Z B L D Z Z       (18) 

2 21

1 32
mink k k

FD
D B L DZ D       (19) 

For solving (18) we need to apply the Landweber 

iterations once more. We decouple the problem in every 

iteration to: 
2

1 12 1
mink

Z
Z B Z Z      (20) 

where    1 1 1 1

1

1 T
k k k kB Z D B L D Z

a

       ; a is the 

maximum eigenvalue of  1 1
T

k kD D  . 

We have the familiar l1-minimization problem (20) 

which can be solved iterative soft thresholding [17]. 

 

1

1 1( ) max(0, ))
2

kZ signum B B
a


    

where    1 1 1 1

1

1 T
k k k kB Z D B L D Z

a

        

 

Solving (19) is easy; it is a least squares minimization 

problem. Any conjugate gradient algorithm can be used 

for this purpose. In this work, we employ the LSQR [18]. 

The algorithm is non-convex therefore there are no 

global convergence guarantees. We employ two stopping 

criteria. Iterations continue till the objective function 

converges to a local minima; by convergence we mean 

that the difference between the objective functions 

between two successive iterations is very small (10
-4

). The 

other stopping criterion is a limit on the maximum 

number of iterations. We have kept it to be 500. 

The algorithm can be expressed succinctly as follows: 

Initialize: Z, D and L 

In Iteration k: 

Compute -  
1 1 1 1( ) ( ( ))k k T k kB L D Z RF y RF L DZ         

   1 1 1 1

1

1 T
k k k kB Z D B L D Z

a

        

Update -  

1

1 1( ) max(0, ))
2

kZ signum B B
a


    

2 21

1 32
mink k k

FD
D B L DZ D     by LSQR 

/2 ( ) ,  where k T k k TL U Soft V B D Z U V     ' 

where
/2 ( ) ( ) max(0, ( ) / 2)Soft diag diag        

 

3. EXPERIMENTAL EVALUATION 

DCE-MRI experiments were performed on female tumour 

bearing non-obese diabetic/severe combined immune-

deficient mice. All animal experimental procedures were 

carried out in compliance with the guidelines of the 

Canadian Council for Animal Care and were approved by 

the institutional Animal Care Committee. Tumour 

xenografts were implanted subcutaneously on the lower 

back region. 

All images were acquired on a 7T/30 cm bore MRI 

scanner (Bruker, Germany). Mice were anaesthetized with 

isofluorane, temperature and respiration rate were 

monitored throughout the experiment. FLASH was used 

to acquire fully sampled 2D DCE-MRI data from the 

implanted tumour with 42.624 × 19.000 mm field of view, 

128 × 64 matrix size  TR/TE = 35/2.75 ms, 40° flip angle. 

1200 repetitions were performed at 2.24 s per repetition. 

The 2D DCE1 dataset was acquired from a mouse bearing 

HCT-116 tumour (human colorectral carcinoma). The 

animal was administered 5 μL/g  Gadovist
®
 (Leverkusen, 

Germany) at 60 mM. The 2D DCE2 dataset was acquired 

from a mouse bearing MDA435/LCC6 tumour (human 

breast cancer). The animal was administered 6 μL/g 

hyperbranched polyglycerol-Gd (synthesized in the 

Faculty of Pharmaceutical Sciences at the University of 

British Columbia)  at 0.2 mM.  

The ground-truth consists of the fully sampled K-space 

from which the images are reconstructed via inverse FFT. 

This dataset had been used in the past to report recovery 

results in [9]. For simulating acceleration of the K-space, 

we used Variable Density random sampling. We 

experimented with two different acceleration factors - 5 

and 2.5, i.e. 20% sampling and 40% of the K-space 

respectively. The reconstruction was carried out with 

several different reconstruction techniques 

 k-t SLR (k-t Sparse and Low-rank recovery) [5] 

 LR (low-rank) BCS recovery[9]  
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 L+S (low-sparse plus recovery with fixed basis) 

recovery [4] 

 Proposed DL L+S (dictionary learnt low-rank plus 

sparse) recovery 

Our proposed algorithm requires specifying three 

parameters (λ1-λ3). The parameters were tuned on a 

validation set. For tuning the parameters we employed a 

sub-optimal yet effective strategy based on the L-curve 

method [19]. For the first parameter λ1 we set the other 

parameters (λ2 and λ3) to zero and use the L-curve method 

to find it. To tune the second parameter λ2, we fix λ1 and 

put λ3=0, to obtaine the value of λ2. To find the last 

parameter we put λ2 and λ1 to their obtained values and 

use the L-curve method for the third time to find λ3. Such 

a technique, although sub-optimal have showed good 

results in practice before [5, 4]. We varied the parameters 

on the log scale (100, 10, 1, 0.1 etc.) and obtained the 

values λ1=10, λ2=1 and λ3=10
-1

. 

In Tables 1 and 2, the reconstruction errors are 

reported in terms of Normalized Mean Squared Error 

(NMSE). Table 1 corresponds to 5 times acceleration 

factor and Table 2 corresponds to 2.5 times acceleration 

Table 1. NMSE for 5 fold acceleration 
Dataset k-t SLR LR BCS L+S Proposed 

2D DCE1 0.1924 0.1654 0.1669 0.1480 

2D DCE2 0.1887 0.1603 0.1650 0.1506 

Table 2. NMSE for 2.5 fold acceleration 
Dataset k-t SLR LR BCS L+S Proposed 

2D DCE1 0.1325 0.1081 0.1102 0.0721 

2D DCE2 0.1187 0.0919 0.1038 0.0732 

 

The k-t SLR technique [5] is the benchmark. Both the 

BCS based technique [9] and the L=R technique improves 

upon the k-t SLR. But the best reconstruction accuracy is 

obtained from our proposed method. For visual clarity we 

show the reconstructed and difference images (ground 

truth - reconstructed) in Fig. 1 and Fig. 2 respectively. 

The difference images are contrast enhanced 10 times for 

visual clarity. 

     

     
Fig. 1. Reconstructed Images. Top - 2D DCE1, Bottom - 2D DCE2. Left 

to Right - Ground-truth, k-t SLR, LR BCS, L+R and Proposed. 

 

    

    
Fig. 2. Difference Images. Top - 2D DCE1, Bottom - 2D DCE2. Left to 
Right - k-t SLR, LR BCS, L+R and Proposed. 

 

The frames shown here are randomly chosen from 

the two sequences. The reconstructed images do not show 

much variation, but the quality of reconstruction can be 

easily observed from the difference images. As expected, 

k-t SLR yields the maximum reconstruction artifacts. 

What is interesting, is that even though LR BCS produces 

lower NMSE than L+R method, the visual quality is 

better from the L+R method. But the best results are 

obtained from our proposed method. Upon careful 

observation, one can see that the difference image from 

our proposed technique is darker than L+R method. 

4. CONCLUSION 

In a recent work [4], the dynamic MRI reconstruction 

problem was solved by a novel formulation which 

modeled the dynamic MRI sequence as a superposition of 

sparse and low-rank components. This differs from prior 

techniques which modeled the sequence as a sparse AND 

low-rank signal [10-12].  

In this work, our basic assumption remains the same, 

i.e. we make us the sparse plus low-rank model. But 

instead of assuming sparsity in a known basis, we 

proposed to learn the sparsifying basis from the data. The 

idea of learning the dictionary while reconstructing the 

signal is based on the BCS framework.  

The optimization problem that resulted from our 

proposal was solved using the majorization minimization 

approach. We experimented on real Dynamic Contrast 

Enhanced (DCE) MRI datasets and showed that our 

proposed method is better than the state-of-the-art 

techniques like sparse AND low-rank modeling [8], 

sparse plus low-rank model (with fixed sparsifying basis) 

[4] and BCS method [9]. 
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