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ABSTRACT

In this paper, we apply the Weyl transform to represent the
vocalization of marine mammals. In contrast to other popular
representation methods, such as the MFCC and the Chirplet
transform, the Weyl transform captures the global information
of signals. This is especially useful when the signal has low
order polynomial phase. We can reconstruct the signal from
the coefficients obtained from the Weyl transform, and per-
form classification based on these coefficients. Experimental
results show that classification using features extracted from
the Weyl transform outperforms the MFCC and the Chirplet
transform on our collected whales data.

Index Terms— whale classification, polynomial phase,
parameter estimation, Weyl transform

1. INTRODUCTION

There is a great deal of current research interest on bet-
ter representing and classifying the vocalizations of marine
mammals. However, the best feature extraction method for
marine mammals classification is unknown. The variation
of whale vocalizations and the uncertainty of the ocean envi-
ronment can decrease the accuracy of classification and more
work needs to be done in this area. A distinctive feature of
many marine mammal calls is that they are frequency mod-
ulated. For this reason, it is natural to model such signals as
polynomial phase signals [1, 2]. In this paper, our interest is in
the task of classifying the chirp-like signals of marine mam-
mals. It therefore becomes natural to ask that the features for
classification of such signals should detect frequency modu-
lation, also known as chirp rates.

One of the most popular features for classification of
acoustic signals (including marine mammals) is the MFCC
(Mel Frequency Cepstral Coefficients) [3, 4]. The MFCCs are
short term spectral based features [5]. Despite being a pow-
erful representation, the MFCC involves first order frequency
information alone, and therefore gives no direct information
about the chirp rates.

A recent attempt to capture chirp rate information more
explicitly is the discrete Chirplet transform [6, 7], which was
proposed for classification in [8, 9]. Chirplets are excellent
for capturing localized chirp-like behaviour.

In this paper, we propose a more global approach to obtain
chirp rate information by using features based upon a second-
order discrete time-frequency representation which we will
refer to as the Weyl transform [10, 11, 12]. More technical
details on the Weyl transform can be found in Section 4.

The Weyl transform is invariant to any shifts in both time
and frequency. Furthermore, we show in Section 4 that, by
pooling coefficients of the Weyl transform in an appropriate
way, a feature vector can be obtained which is essentially a
chirp rate predictor. We will support our claims with numer-
ical experiments in the context of the two-class NOAA test
data set consisting of right whales and humpback whales. We
propose two different sets of features which can be extracted
from the Weyl transform, and compare them with MFCC and
Chirplets. We observe that both sets of features outperform
the other two choices of features.

2. BACKGROUND

Many different signal representation methods have been
applied to whale signal representation, such as the Chirplet
transform [8, 9], the EMD transform [13], sparse coding [14],
and MFCC [3]. Among them, the MFCC is one of the most
popular. The Chirplet transform is well known for its ability
to detect a signal in a noisy environment [2]. In this section,
we will briefly present these two methods and they will be the
subject of our numerical experiments in Section 5.

2.1. MFCC

The MFCC is widely used in speech signal processing.
The process of MFCC is to project and bin the short time
Fourier transform of a signal according to a log-frequency
(Mel) scale.1 The short time Fourier transform of the signal

1Or sometimes a part-linear, part-logarithmic frequency scale.
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s(t) with length N is given by [15]:

X(k) =

N−1∑
t=0

w(t)s(t) exp(−j2πkt/N), k = 0, 1, · · · , N − 1

where w(t) is the window function. We apply the Mel filter
bank H(k,m) to X(k):

X ′(m) = ln
(N−1∑

k=0

|X(k)|H(k,m)
)
, m = 1, 2, · · · ,M

whereM is the number of filter banks andM � N . The Mel
filter bank is a collection of triangular filters defined by the
center frequency fc(m):

H(k,m) =


0, f(k) < fc(m− 1)
f(k)−fc(m−1)
fc(m)−fc(m−1) , fc(m− 1) ≤ f(k) < fc(m)
f(k)−fc(m+1)
fc(m)−fc(m+1) , fc(m) ≤ f(k) < fc(m+ 1)

0, f(k) ≥ fc(m+ 1)

where f(k) = kfs/N , fs is the sampling frequency. The
MFCCs are obtained by computing the DCT ofX ′(m) using:

c(l) =

M∑
m=1

X ′(m) cos
(
l
π

M
(m− 1

2
)
)
, l = 1, 2, · · · ,M

(1)

The above process is usually repeated over a sliding window,
and the MFCC coefficients from each window are then con-
catenated.

2.2. Chirplet transform

Given a signal s(t), we can represent the signal as a
weighted sum of Chirplet functions [6, 16]:

s(t) =

M∑
i=1

Ai exp(jφi)k(ni, ti, ωi, ci, di) (2)

where k(ni, ti, ωi, ci, di) is the Gaussian Chirplet function,
and

k(n, t, ω, c, d)

=(
√
2πd)−

1
2 × exp

{
−
(n− t

2d

)2
+ j

c

2
(n− t)2 + jω(n− t)

}
.

(3)

The t, ω, c and d represents the location of time, frequency,
chirp rate, duration of the gaussian Chirplet. We can represent
and reconstruct the signal base on the Chirplet coefficients.

3. DESCRIPTION OF SIGNALS

The marine mammal vocalizations can be represented
by a family of polynomial-phase signals. The upsweep call

is commonly found in right whale vocalizations, which are
typically in the 50-400 Hz frequency band and last for 1 sec-
ond [1]. The humpback whale can also generate sounds like
the right whale upsweep call. In this paper, we use right whale
and humpback whale data, which were collected in the con-
tinental shelf off Cape Hatteras in North Carolina by NOAA
and Duke Marine Lab, for experimental validations. The data
was collected by using a linear array of marine autonomous
recording units (MARUs) underwater, between December
2013 and February 2014. The MARUs are programmed to
collect continuous acoustic recordings at a sample rate of 2
kHz. The data was collected from four different locations
in Cape Hatteras. In this paper, we use the data file that was
collected in the location which contains both right whales and
humpback whales calls. The data is not publicly available at
the moment.

The data file we use contains 24 vocalizations of right
whales and 24 vocalizations of humpback whales. Example
time-frequency representations using the right whale signals
are shown in Fig. 1, and the humpback whale signals in Fig. 2.

Fig. 1: Examples of right whale signals

Fig. 2: Examples of humpback whale signals

4. WEYL REPRESENTATION OF CHIRP SIGNALS

The Weyl Transform in the Fourier domain is closely re-
lated to the Wigner Ville distribution [17, 18], or the discrete
polynomial phase transform [19, 20]. It is central in radar
signal processing [21], where it is known as the ambiguity
function. For a discretized signal s of length K, the Weyl
transform has length K2, and consists of the Fourier spec-
trum of diagonal bands of the covariance matrix ssT. It can
be computed efficiently by means of K applications of the
Fourier transform.

The Weyl representation of a signal is as follows [11]:
consider a real signal s(l) over a time interval [0, 1), dis-
cretized intoK samples s(t), where t ∈ ZK = {0, 1, · · · ,K−
1}. Define the Weyl transform coefficients {ωab}, where
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a, b ∈ ZK , as:

ωab =

K−1∑
t=0

exp
(
−j2πbt

K

)
s(t)s(t+ a). (4)

Letting (Za)t = s(t)s(t + a), Za is in fact a diagonal
band of the correlation matrix ssT , capturing periodicity. The
Weyl transform coefficient consist of the Fourier transform of
each correlation band ωab = F{Za}b .

Now consider a linear chirp signal of the form:

s(l) = cos(2π(ml + rl2)), m, r > 0

where m is the base frequency, and r is the chirp rate. Dis-
cretizing s(l), we have:

s(t) = cos
(
2π
(mt
K

+
rt2

K2

))
. (5)

We define two sets of Weyl transform feature for the sig-
nal.

Feature set 1: We use Vr as our feature set.

Vr =
∑
(a,b):

2ar/K=b,r∈Zn

|ωab|2 (6)

Vr is a chirp rate detector, because

ωab =

K−1∑
t=0

exp
(
− j2πbt

K

)
cos
(
2π
(mt
K

+
rt2

K2

))
× cos

(
2π
(m(t+ a)

K
+
r(t+ a)2

K2

))
=
1

2

K−1∑
t=0

exp
(
− j2πbt

K

)(
cos
(
2π
(ma
K

+
(2at+ a2)r

K2

))
+ cos

(
2π
(m(a+ 2t)

K
+
r(2t2 + 2at+ a2)

K2

)))
. (7)

The term cos
(
2π
(

m(a+2t)
K + r(2t2+2at+a2)

K2

))
is a chirp,

and the sum of chirps is of lower order in Vr [10]. Therefore,

ωab =
1

4

K−1∑
t=0

(
exp
(
j2π
(ma
K

+
ra2

K2

))
exp
(
j2π
((2ra

K
− b
) t
K

))
+ exp

(
−j2π

(ma
K

+
ra2

K2

))
exp
(
−j2π

((2ra
K

+ b)
t

K

))
+ lower order terms

)
. (8)

We can see that ωab has two sharp peaks when − 2ra
K ≈ b

and 2ra
K ≈ b. Since the signals of interest in the current data

set always have positive chirp rate, we discount the negative
chirp rates, and the peak at 2ra

K ≈ b indicates a chirp rate:

r ≈ bK

2a
. (9)

We can use Vr as the feature vector, or we can instead use
it to fit a quadratic polynomial to the frequency, the coeffi-
cients of which will be our second set of features.

Feature set 2: We use (m̂, r̂) as our feature set.

r̂ = argmax
r∈Zn

Vr (10)

having estimated r̂, we de-chirp:

ŝ(t) = s(t) exp
(−j2πr̂t2

K2

)
(11)

and take the Fourier transform of ŝ(t), F(ŝ), and record the
location m̂ of the largest entry as the estimate of m. We thus
obtain the second feature set (m̂, r̂). The chirp is character-
ized by (m̂, r̂) as:

s(t) ≈ cos(2π(m̂t+ r̂t2)). (12)

Note that this is an extremely compact feature set, where
each signal has just two features. An example of signal esti-
mation is illustrated in Fig. 3. The right whale and humpback
whale can generate upsweep calls, which can be expressed
using the linear chirp model. The original right whale signal
is shown in Fig. 3(a), and Fig. 3(c) is the plot of the features
Vr and the location of the peak corresponding to the value of
the estimated chirp rate r̂. The plot of the Fourier transform
of ŝ(t) is shown in Fig. 3(d), with the location of the peak
corresponding to the estimated base frequency m̂. Fig. 3(b) is
the estimated signal using m̂ and r̂.

(a) Real right whale signal (b) Reconstructed signal

(c) Chirp rate vector (d) Base frequency

Fig. 3: Example of signal reconstruction

The technique to obtain feature set 2 is closely related to
existing methods of detecting polynomial phase signals, such
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as the discrete polynomial phase transform [19, 20] or the
higher order ambiguity function [22], and also to the Weyl
time-frequency strip filters described in [23].

5. CLASSIFICATION RESULTS

We apply the Weyl transform, the Chirplet transform and
MFCC to obtain signal features, and apply the KNN classifier
(k = 3) to classify the NOAA data. For the MFCCs, we form
the spectrogram using the Hamming window of length 128,
and the step size 64, then compute the coefficients by multi-
plying the filter bank function [24] with the spectrogram. We
extracted 12 coefficients from each time frame, and concate-
nate the coefficients along the time axis. Suppose the length
of the signal is 1 second in length, and the sampling fre-
quency is 2000 Hz, then for each signal the length of MFCC
features is 384. For the Chirplet part, we use the Gaussian
Chirplet atom, and use 15 Chirplet atoms to represent each
signal. We use maximum likelihood estimate and the EM al-
gorithm [6, 25] to estimate the Chirplet coefficients and use
the base frequency and chirp rate as features for each signal,
giving a feature vector of length 30.

The ROC plot is shown in Fig 4. The AUCs (Area un-
der the curves) under the ROC plots are given in Table 1.We
use six fold cross-validation to generate the plots. We use
83% right whale and humpback whale data to do the training,
and the remaining whale data to do the testing. We calculate
the distance of each testing data points to the training data
points, and make a decision for each testing data based on its
three nearest neighbor points, and compare it with the ground
truth, to obtain the value of true positive rate and false positive
rate. We know that the probability of false alarm (PF ) and the
probability of detection (PD) are both from 0 to 1. In order
to generate the ROC curve, we vary the value of PF over the
range 0 : 1/6 : 1, and obtain the corresponding threshold for
PD based upon the obtained true positive and false positive
rate. Since the number of vocalizations of right whales and
humpback whales available for the classification results were
small, the classification results are promising but preliminary.

Table 1: Area Under the Curves (AUCs)

Weyl Feature Weyl Feature
Set 2 Set 1 MFCC Chirplet transform

0.9514 0.9410 0.8472 0.8646

With the KNN classifier, the classification accuracy of us-
ing Weyl feature set 1 and Weyl feature set 2 outperform the
MFCC and Chirplet coefficients. For this data set, the fre-
quency ranges of right whale and humpback whale vocaliza-
tion are both in the 50-250 Hz frequency band, and their base
frequency is uniformly distributed in the range of 40 to 160
Hz, but the length of their vocalization and energy distribu-

Fig. 4: The ROC of classifying whales using signal represen-
tation methods

tion are different, which means that the chirp rate information
can better represent the whale calls. In addition, some of the
humpback whale data have several harmonics, while all the
right whale data just have one harmonic, the Weyl coefficients
can distinguish one harmonic case and several harmonic case.
The MFCC can represent the local frequency information of
the signal over time, but neglect the higher order chirp rate in-
formation. Moreover, the MFCC applies the filter-bank func-
tion to the spectrogram, and it may not be able to distinguish
the several harmonic and one harmonic case.

For the Chirplet coefficients, the computational cost to ob-
tain the coefficients is high in our approach, so the limited
numbers of Chirplet atoms may not perfectly represent the
whole signal, especially when the length of the signal is long.
Like the MFCC, Chirplet atoms can only represent local in-
formation of the signal, so in this data set, it does not perform
as well as the Weyl transform features.

6. CONCLUSION

In this paper we have shown that the Weyl transform can
well represent polynomial phase signals. We can obtain a
chirp rate predictor by pooling Weyl transform coefficients
appropriately. The chirp rate feature vectors and chirp co-
efficients have been shown to outperform the MFCC and
Chirplets for right whale and humpback whale data. Similar
results are to be expected in classifying other marine mam-
mal calls which have similar frequency range, but whose
chirp rates can be distinguished.
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