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ABSTRACT

This paper presents an automatic system for recognition of bird
species from audio field recordings. The acoustic signal is first seg-
mented into isolated time-frequency segments, each corresponding
to an individual detected sinusoidal component. Each segment is
represented by a temporal sequence of the frequency values of the
detected sinusoid, referred to as frequency track. Hidden Markov
models (HMMs) are employed to model the temporal evolution of
frequency track features. Individual syllables of bird vocalisations
are discovered using an unsupervised method based on dynamic time
warping and agglomerative hierarchical clustering. The outcome of
this is then employed to create individual HMMs for syllables of
each species. Experiments are performed on over 33 hours of field
recordings, containing 30 bird species. Evaluations demonstrate that
the use of individual syllable HMMs provides over 40% error rate
reduction over the use of single HMM for each bird species of the
same complexity. The syllable HMM-based system recognises bird
species with accuracy over 95% using 3 seconds of detected signal.

Index Terms— bird species recognition, hidden Markov model,
syllable, unsupervised clustering, DTW, segmentation, frequency
track, sinusoid detection

1. INTRODUCTION

Automatic processing of bird acoustic signals usually starts with seg-
mentation of the audio signal into isolated segments. An automated
segmentation has been performed using an energy-based threshold
decision, with threshold set based on estimating noise level, e.g., [1]
or by decomposing the acoustic scene into sinusoidal components
[1, 2, 3, 4, 5, 6]. The works in [1, 2, 3] employed the sinusoidal
decomposition method proposed in [7]. We proposed in [8] a prob-
abilistic method for the detection of sinusoids and employed this in
our recent studies in bird pattern processing [4, 5, 6, 9] and also here.

Several types of feature representations and modelling ap-
proaches of bird acoustic signals have been explored. Many previ-
ous studies, inspired by features used in the field of speech process-
ing, employed Mel-frequency cepstral coefficients (MFCC), e.g.,
[10, 11, 1, 12]. Since the conventional MFCCs capture the entire
frequency band, they are prone to background noise and presence
of other birds/animals concurrently vocalising in other frequency
regions. A set of statistical descriptors to characterise the detected
spectro-temporal segments were used in [1, 2, 3, 13]. Although this
provides a single feature vector, usually of a low dimensionality, it
may not be able to describe well more complex types of syllables
and may be susceptable to any variations in segmentation. In few

other studies, including our recent works, [1, 14, 4, 5, 6, 9], the
segments were obtained based on sinusoidal detection and then rep-
resented as a temporal sequence of frequencies, which we here refer
to as frequency track. The frequency track features, if extracted
well, have a good potential, especially, in processing field record-
ings of bird vocalisations which usually contain various background
noise and often also other birds/animals vocalising concurrently. We
demonstrated in [4] that frequency track features obtained consid-
erable performance improvements for recognition of bird sounds
in noisy background conditions than the use of MFCCs. The most
commonly used modelling approaches include dynamic time warp-
ing [15, 10], Gaussian mixture modeling [1, 4], and hidden Markov
models (HMMs) [1, 14, 16, 6].

In this paper, we extend our study of automatic bird species
recognition using field recordings by incorporating modelling of in-
dividual bird syllables. Audio signal is first segmented using an im-
proved version of the method introduced in [8] and each segment is
represented using frequency track features. The temporal evolution
of these features is modelled using hidden Markov models. Unlike
our previous work in [6], in which all syllables were modelled using
a single HMM, in this paper we investigate the modelling of each
individual syllable. Since there is no syllable-level label information
available with the data, we first employ an unsupervised clustering
approach as presented in [5] to discover a set of syllables for each
species. Recognition is performed using the Viterbi algorithm to
calculate probability of each detected segment on each bird species
model and aggregating the probabilities from all segments within
a given duration of the signal. Experimental evaluations are per-
formed on field recordings provided by Borror Laboratory of Bioa-
coustics [17]. The syllable-based system achieved over 95% bird
species recognition accuracy, which is over 40% error rate reduction
in comparison to the single model system of the same complexity.

2. SEGMENTATION AND ESTIMATION OF FREQUENCY
TRACKS

The segmentation of the audio signal and estimation of frequency
tracks is performed based on detecting sinusoidal components in the
signal. This is performed using the method we introduced in [8],
with further modifications, and this is summarised below.

The detection of sinusoidal components is tackled as a pattern
recognition problem. It is performed on a signal frame basis. Each
peak in the magnitude spectrum of signal frame is considered as a
potential sinusoidal component. A given spectral peak kp is charac-
terised by a feature vector y, which is formed using M points of the
short-time magnitude and phase spectrum around the peak. Specifi-
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cally, y=(y1,y2), where y1=(|S(kp −M |/|S(kp)|, . . . , |S(kp +
M |/|S(kp)|) and y2=(∆φ(kp − M), . . . ,∆φ(kp + M)). The
∆φ(k) is the phase difference between the current and the previous
signal frame, with the shift between signal frames being accounted
for. The distribution of the multivariate feature vector y is modelled
using a multi-component Gaussian mixture. A model is obtained
for spectral peaks corresponding to noise, denoted by λn, and to
sinusoidal signals, denoted by λs, at various SNRs. The decision
whether a spectral peak corresponds to a sinusoidal signal or not is
based on the maximum likelihood criterion, i.e., the peak is detected
as a sinusoid if p(y|λs) > p(y|λn).

The following parameter setup is used. The signal, sampled at
48 kHz, is divided into frames of 256 samples with a shift of 48 sam-
ples between the adjacent frames. Rectangular analysis window is
used and the DFT size is set to 512 points, i.e., the signal is appended
by 256 zeros in order to provide a finer sampled DFT spectrum. The
parameter M is set to 6 frequency bins. The training of the models
of sinusoidal signals was performed using simulated sinusoids, with
a range of linear frequency modulation. The models consist of 32
Gaussian mixture components.

The above provides a set of detected sinusoidal components at
each signal frame. This can be considered as an initial segmenta-
tion of the acoustic scene. The following steps are performed to
further refine this segmentation result. We first discard all segments
of a very short length, specifically those of less than 4 frames, con-
sidering that these were detected accidentally by error. Then, inter-
polation between the beginning and the end point of two detected
segments is performed for all segments which are separated by up to
two frames and two frequency bins from each other. This was per-
formed in order to avoid accidental split of a segment due to a missed
detection of few frequency bins. After this, we discard all segments
whose length is less than 14 frames, as it is unlikely to have bird vo-
calisations of such short lengths. Since we are using field recordings,
there are co-vocalisations of other birds and animals present in the
background. However, there is no label information available that
would indicate the vocalisations of the bird of interest. In order to
avoid these background co-vocalisations, we consider that vocalisa-
tions of bird species being recorded are of a higher energy than any
other present co-vocalisations. Thus, we discard all segments whose
average energy is 15 dB below the highest average segment energy
in each recording. Finally, we discard all segments whose median
frequency is below 2 kHz. This low frequency region does not cor-
respond to bird vocalisations in our data and this is performed to
avoid detection of segments corresponding to human speech which
is also present in the recordings.

An example of a spectrogram of an audio field recording con-
taining concurrent vocalisations of two bird species and the final
estimated segments are depicted in Figure 1. It can be seen that
frequency tracks detected correspond well to vocalisations of birds.

3. HMM-BASED BIRD SPECIES RECOGNITION SYSTEM

The segmentation and frequency track feature extraction step, as de-
scribed in Section 2, provides for a given audio recording a set of
detected segments. A model of each bird species is obtained based
on modelling the temporal evolution of frequency tracks of detected
segments using a left-to-right, no skip allowed, HMM. The HMM
state output probability density functions are using Gaussian distri-
bution(s) with a diagonal covariance matrix. The following sections
describe the baseline model, which employs only a single HMM for
each bird species, and the proposed model, which employs individ-
ual HMMs for syllables for each bird species.
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Fig. 1. An example of a spectrogram (a) of audio field recording and
the corresponding estimated frequency tracks (b).

3.1. A single model for each bird species

We use the model presented in our previous work in [6] as the base-
line model in this paper. This consists of a single HMM built for
each bird species by training the model using the entire collection
of the detected segments from all training recordings of that species.
To account for the variety of syllable patterns and variations of indi-
vidual instances of vocalisations, the probability density function at
each HMM state is modelled with a mixture of Gaussians.

3.2. Modelling of individual syllables for each bird species

Instead of using a single model for each species, here we propose
to obtain an individual HMM to model each type of bird syllables.
This would be straightforward if the label information for syllables
was available or if the set of syllable patterns produced by each bird
species was known. However, none of these is available for our data
and is unlikely to be publicly available in general. As such, we are
facing the problem of how to train the individual syllable HMMs in
an unsupervised manner. The approach we have taken to deal with
this problem is described in the following subsections.

3.2.1. Unsupervised discovery of syllable patterns

There could be several ways to approach the problem of unsuper-
vised discovery of bird vocalisation patterns. In this paper, we em-
ployed an extension of the method introduced in [5], where it was
evaluated on a single bird species only. This consists of first search-
ing for matches, possibly partial, between each pair of detected seg-
ments by employing a modified dynamic time warping (DTW) algo-
rithm, and then using the obtained similarity values in hierarchical
clustering.

Unlike conventional DTW, which calculates similarity of whole
sequences, the modified DTW allows to search for partial and mul-
tiple matches within segments. This is useful for suppressing the ef-
fect of possible detection errors at the beginning and end of segments
and also for dealing with situations when the detected segment actu-
ally contains several syllables. The modified DTW is implemented
by calculating several DTW searches in parallel, each considering a
different starting point on one of the sequence and allowing the start
anywhere on the other sequence [5]. For a given pair of segments,
the outcome of the DTW search is a set of partially matching paths.
Out of these, only the match with the highest similarity score is used
in further stages. The similarity score is calculated based on a com-
bination of the cummulative distance of the DTW path match, length
of the matching path and the ratio of the length of the matching path

769



to the total length of the segment. After processing of all the detected
segments, we have the similarity score for all the segment pairs. This
is then used in agglomerative hierarchical clustering approach to ar-
rive at a set of syllable clusters. Initially, each segment is assumed
to be a distinct cluster. At each clustering level, two clusters with
the highest similarity score are merged into a new joint cluster. The
similarity score is caclulated as the average similarity score over all
the segments from each of the clusters. Only the clusters for which
all the segments assigned to them so far have an overlap in path with
each other are being merged.

An example of result obtained by the partial DTW search on
a pair of detected segments from field recordings is given in Fig-
ure 2 (a). It can be seen that 4 partial matches in the given two
sequences were found, with the match in bold to be used in further
stage. Figure 2 (b) depicts statistics of the clustering procedure out-
come. It shows the relative occupancy of each cluster (in decreasing
order), averaged over all the bird species, with the standard deviation
above and below. It is observed that the average relative occupancy
above 0.5% was obtained for the first 50 clusters.
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Fig. 2. An example of the output of the partial DTW search (a).
Mean of the relative occupancy of the first 80 clusters (ordered from
highest to lowest) calculated over all bird species as the output of the
clustering procedure (b).

3.2.2. Modelling individual bird syllables

The outcome of the partial DTW search and hierarchical clustering
is a set of clusters of vocalisation patterns for each bird species. Con-
sequently, this also provides the label information for each detected
segment of the data. Using this label information, we can train the
individual syllable HMMs of each species. As the obtained clusters
of vocalisation patterns are expected to be homogenous, the state
output probability density function (pdf) of each individual syllable
HMM consists only of a single Gaussian distribution. As we use
only a given number of clusters based on their occupancy, there will
be remaining clusters whose segments are not assigned to any of the
selected clusters. Thus, in addition to the individual syllable HMMs,
we also have a single HMM to model all these remaining segments.
To cover the variety of these remaining segments, the state pdf of this
model consists of several Gaussian mixture components. An exam-
ple of the state output pdf of nine trained individual syllable HMMs
of two bird species is depicted in Figure 3. It can be seen that each
model provides a distinctive pattern.

3.3. Recognition of bird species

We consider the identification of bird species from a finite set of
species based on an utterance of test signal of a given length.
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Fig. 3. An example of the mean values of the state output Gaus-
sian pdf, modelling frequency track features, for nine trained syllable
HMMs of bird species House Finch (a) and Northern Cardinal (b).
The x- and y-axis denotes the HMM state and frequency index, re-
spectively.

For a given utterance of audio recording, the segmentation and
frequency track feature extraction step, as described in Section 2,
provide a set of R detected segments O={Os}Rs=1, with each seg-
ment being represented by a sequence of featuresOs=(o1

s, . . . ,o
Ts
s ),

where Ts is the number of frames in segment s. We treat each de-
tected segment individually. The Viterbi algorithm is used to calcu-
late an approximation of the probability of each segment s on each
bird species model λb, i.e., p(Os|λb). In the case of recognition
based on individual syllable models, the probability is calculated on
each syllable model and the maximum is taken. Considering that
vocalisations of only a single bird species are present in the signal,
we can calculate the probability of the utterance being produced by
each bird species b as the product of the individual segment prob-
abilities, i.e., p(O|λb)=

∏R
s=1 p(Os|λb), and obtain the recognised

bird species as b∗=arg maxb p(O|λb). To account for a possi-
ble presence of other birds/animals which do not exist in our bird
species vocabulary, i.e., outliers, we explored the calculation of the
overall probability p(O|λb) by ommitting from the product those
segments whose average frame probability was below a given value
on all models, which is similar to approach presented in [18], but no
improvements were observed.

4. EXPERIMENTAL EVALUATIONS

4.1. Data description

Experimental evaluations were performed using field recordings
from [17]. These are recordings in real world natural habitats of
birds, collected over several decades, mostly in the western United
States. The recordings are encoded as mono 16-bit wav files, with
sampling rate of 48 kHz. There are several files for each bird
species, and each file is typically between one to ten minutes long.
As these are field recordings, the audio contains also background
environmental noise, vocalisations of other birds/animals and hu-
man speech. For each recording, there is a label indicating the single
bird species vocalising but there is no label information that would
indicate the start and end times of each bird vocalisation.

From the available data, we chose randomly a set of 30 bird
species. In total, we used over 33 hours of audio recordings, with be-
tween 28 to 95 minutes per bird species. The total length of detected
and used frequency track segments was 2.2 hours. For experimental
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evaluation, each recording is split into training and testing part in
proportion of two to one, respectively. The data used for testing was
further split into utterances, where each utterance consisted of signal
containing approximately a given length of detected segments.

4.2. Experimental setup

The frequency track features extracted as presented in Section 2 pro-
vide the frequency value at each frame time but do not include any
information about how the frequency track evolves over time. In
order to include local dynamic information, we calculated temporal
derivatives of the frequency track features, referred to as delta and
acceleration features. These were obtained as in [19] with the win-
dow set to 3 and 2, respectively, and added to the frequency track
features, resulting in 3 dimensional feature vectors. In all experi-
ments, the number of states in HMMs was set to 13, which reflects
the minimum allowed length of the detected segment and results ob-
served in our previous experiments.

4.3. Experimental results

First, we present evaluations of the baseline HMM-based bird
species recognition system, i.e., system which uses only a single
model for each bird species. Results achieved as a function of the
number of Gaussian mixture components at each HMM state are
presented in Table 1. These results are obtained using utterances of
length of only 1 second. It can be seen that the recognition accuracy
is quite high for 10 mixture components. It keeps increasing little
but steadily as the number of mixture components increases up to
80 and then flattens.

Table 1. Bird species recognition accuracy (RA) obtained by the
baseline HMM-based system using a single model for each bird
species with a given number of mixture components per state. Ut-
terances of 1 second length used.

Number of mixture components per state
10 20 30 40 60 80 100

RA (%) 75.1 78.4 80.9 82.2 82.4 83.3 83.3

Now, we present results obtained with the proposed recogni-
tion system, having a set of individual syllable models for each bird
species. In order to have comparable conditions of the new models
to baseline model presented above, we first set the number of indi-
vidual models to be the same for all bird species. Experiments are
performed with several different values for the number of individ-
ual models. As stated in Section 3.2.2, the state output pdf of each
individual syllable HMM consisted only of a single Gaussian distri-
bution. The state output pdf of the additional model, used to cover
the segments not assigned to any of the individual models, used mix-
ture of Gaussians with the number of components set such that the
total number of parameters is the same across all the proposed and
baseline models. The baseline model with 80 Gaussian mixture com-
ponents per state is used. Results are presented in Table 2. It can
be seen that the proposed model achieves considerable recognition
accuracy improvements over the use of single HMM, while the com-
plexity of the models is the same. As the number of used individual
syllable models increases, the recognition accuracy increases.

Finally, we performed experiments when the number of individ-
ual models used for each bird species is not the same but it is decided
based on the relative occupancy of each cluster, with the threshold

Table 2. Bird species recognition accuracy (RA) obtained by the
HMM-based system employing individual models of bird syllables.
Utterances of 1 second length used.

Single Syllable HMM
HMM Number of individual syllable models
(Base) 20 30 40 50 60 70

RA (%) 83.3 85.6 87.9 88.1 89.2 89.5 89.8

set in a way that the number of individual models is 60 in average
over all bird species. The state output pdfs contained a single Gaus-
sian for each individual HMM and 20 Gaussian mixture components
for the additional model. These experiments were performed using
different length of the detected signal for testing, specifically, vary-
ing from 1 second to 3 seconds. The results achieved by the baseline
and proposed models of the same complexity are presented in Ta-
ble 3. It can be seen that using the varying number of individual
models further improved the performance from 89.5% (as presented
in Table 2) to 90.2% when using the utterance of 1 second. The
recognition accuracy when using 2 seconds is considerably higher
than 1 second and smaller improvement is seen for 3 seconds long
utterances. In all cases, the use of the proposed individual syllable
models showed significant recognition accuracy improvements, with
the error rate reduction between 41.3% to 50%.

Table 3. Bird species recognition accuracy and error rate reduction
obtained by the baseline single and individual syllable HMM-based
recognition system when using different length of detected signal.

Utterance Rec. Acc. (%) Error Rate
length Single HMM Syllable HMM Reduction (%)
(sec) (Base)

1 83.3 90.2 41.3
2 88.8 94.4 50.0
3 92.0 95.5 43.8

5. CONCLUSION

We presented in this paper an automatic system for recognition of
bird species from audio field recordings based on modelling individ-
ual syllables of species. The proposed system employed a method
for detection of sinusoidal components to decompose the acoustic
scene into isolated time-frequency segments. Each segment was rep-
resented as a temporal sequence of the detected sinusoid frequency,
referred to as frequency track. The temporal evolution of frequency
track features was modelled by employing hidden Markov models
(HMMs). We developed a baseline system that used only a single
HMM for each bird species and the proposed model that used several
HMMs to model individual syllables. Unsupervised clustering was
employed to discover the set of bird syllable patterns. Experimental
evaluations were performed on field recordings provided by the Bor-
ror Laboratory of Bioacoustics. Experimental results demonstrated
that the proposed individual syllable HMM-based system provided
over 40% bird species recognition error rate reduction over the single
HMM-based system of the same complexity.

Acknowledgement
Data provided by Borror Laboratory of Bioacoustics, The Ohio

State University, Columbus, OH, all rights reserved.

771



6. REFERENCES
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