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ABSTRACT filter and thresholded with a global value to produce a binary

mask. Segments of individual syllables are then extracted a

di di invol detecting bird ts, vhi connected components from the spectrogram based on the bi-
10 FECOraINGS INVOWES e ecting Lirc: song segments ICnary mask. While this approach has been shown to perform

will be subsequently input to a classifier. In-field record- i iy field di it has two inh ¢ limitatio
ings are contaminated with various environmental noise/’! ON NOISy Tield recordings, It has two inherent fim

For such recordings, supervised segmentation has been o'ﬁ-rSt’ using a single global threshold is generally subopti

served to outperform unsupervised energy-based apprsxach@.aI b ecause different spectrograms or even differentisiplia
Prior supervised segmentation work considers only pixel‘-’vIthln a single spectrogram may require different thredbol
to be extracted properly. Second, human-annotated spectro

level predictions and ignores the supervision provided a ) . ) .
the segment-level. We propose a hierarchical approach thf2ms may contain valuable information about what bird song

learns to isolate bird song syllables based on both pix&lte syllaples look like. Such informgtion cannot be captur.ed at
and segment-level information. Experimental results sggg the pixel Ie\{el, and thus not utlllzgd by the aforementioned
that our method outperforms an existing supervised metho'anethOd’ which only learns at the pixel level.
that learns only from pixel-level supervision. In this paper, we propose to address these two limitations.
Specifically, we consider multiple thresholds to build arhie
“archy of candidate segments for each spectrogram. Learning
from syllable-level supervision, we train a quality predido
assess the quality of each candidate segment. The final seg-
1. INTRODUCTION ments are then identified by applying an efficient bottom-up
selection procedure to the hierarchy.

We evaluate our method both at the pixel level and

: . X ! . egment level using 200 field recordings. The results sug-
he_alth. Due 0 |t-s various pc_>tent|al benefits to_so.C|_ety an@est that, compared to the baseline method, our proposed
science, interest in pmacoustu;g has bee.n steadily 8083 hethod achieves significantly better segment-level qualit
mamly to help monitor ar_1d_ _m|t|gate environmental mpactswh”e maintaining comparable pixel-level quality.
resulting from human activities [1]. Among the species that
are observable in their natural habitat, birds are the rmarst ¢
monly chosen as their behavior reflects critical environtalen
changes in both global and local scales [2]. Bird species cla 2. PROPOSED METHOD

sification and detection are two of the most common goals of

bird song analysis. Several studies have achieved pragnisiyyr proposed method takes as input the probability map gen-
results [3-6], with each of them utilizing syllables duetieit  orated by the Random Forest classifier in the previous work
important rlole as the basic bU|I.d|ng blocks of bird songs [?] [8]. Fig. 1 displays an example probability map generated

~ In previous work, a supervised method for extracting inrom a time-frequency spectrogram by the Random Forest
dividual bird song segments from noisy audio recordings hag|assifier. Our method consists of three main steps. In the
been introduced [8]. Each recording is first converted 0 st step, we apply multiple thresholds to the input probabi
spectrogram and a whitening filter is applied to normalize th ity map, producing a hierarchy of multiple levels of segnsent
noise level. A Random Forest classifier is then trained with @, the second step, a quality predictor is trained to assign a
set of human-annotated spectrograms to assign a probabiligcore to each candidate segment in the hierarchy. The last
for each pixel in the spectrogram belonging to bird song segsep selects the final segments from the hierarchy based on
ments. The probability map is then smoothed with a Gaussiaghe quality scores. The output of our method is a binary mask

This work is partially supported by the National Science ridation ~ OF €ach spgctrogram, where each connected component rep-

grants 11S-1055113, CCF-1254218, and DBI-1356792. resents a bird song segment.

A common framework of identifying bird species from au-

Index Terms— Audio segmentation, supervised segmen
tation, bird species classification

The field of bioacoustics studies animal vocalization t@ass
biodiversity, which serves as an indicator of environmenta,
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Fig. 1. A probability map generated by the Random Forest

classifier. (te.fo
I Iy Aligned /g and I

Fig. 3. Alignment of a segmenks and a templatd, based
on energy peaks.

I overlaps with a ground-truth segmdt, the overlap ratio
betweenls andI is defined as:

St Sl HIs(t f) =1 A I(t, f) =1}

Sie, X, st f) = 1V Ia(t, f) :3

1
where(t, f) represents the time-frequency coordinate in the
original spectrogram. Iffg overlaps with more than one
ground truth segment, the quality is defined to be the maxi-
mum overlap ratio.

Next, we define a set of template-based features to repre-
Fig. 2. Several levels of segmentation hierarchy built bysent the segments. We consider each ground-truth segment in
thresholding the probability map in Fig. 1. Each white blsb i the training spectrograms as a template. Given a set of tem-
considered a segment. From top to bottom, the thresholds apéates, to represent a segmégt we compute the similarity
0.20, 0.30, 0.40, and0.60. between/s and each templatg-. The idea is that the ground
truth segments provide us with good examples of what bird
song segments should resemble, and how similar a segment is
to these “good examples” can be indicative of its quality. To

Our system uses 10 threshol@<20) to 0.65 with 0.05 step) to ~ compute the similarity betweely andI7 we first align them

build a 10-level segmentation hierarchy for each specarmgr  based on their energy peaks, and compute their overlap ratio
Based on empirical observations, thresholds bel®p pro- ~ as defined in Equation 1. Note that we only allow segments
duce severe under-segmentation that creates large blobstefbe aligned if their peaks’ frequency values differ no more
segments, in addition to noise segments. Meanwhile, threskhan 30 pixels. For such cases, the alignment processss illu
olds above).65 results in highly fragmented segments due totrated in Figure 3. Since there can be more than one peakin a
over-segmentation. Fig. 2 shows a part of the hierarchy corfegment, 3 peaks are randomly selected from the segment and

structed for the probability map shown in Fig. 1. 3 peaks from the template, resulting in 9 pairs of peaks. The
maximum overlap ratio between the segment and the template

aligned at those peak pairs is then used.

We build our segment quality predictor using Support
Once the hierarchy is constructed, the next step is to agsess Vector Regression (SVR) [9] with a linear kernel. Each seg-
quality of each segment in the hierarchy. To achieve this, thment is represented byM;--dimensional feature vector, with
human-annotated spectrograms are utilized to learn asegreNy as the number of templates. Depending on the number of
sion model for predicting segment quality. To build such aexample spectrograms, there can be hundreds of grourid-trut
regression model, we first generate segmentation hieemchisegments. In our implementation, to speed up calculatidn an
for the training spectrograms. For each resulting segment, reduce the dimension of the feature vector, the groundi-trut
compute a quality value (betweérand1) based on its over- segments are grouped inf® clusters using thd{-means
lap ratio with ground-truth segments. Consider a segmigent algorithm. Each cluster medoid is then used as a template.
in the hierarchy of a particular spectrogram and a corredpon  To select the optimal regularization parametéefor the
ing ground truth segmenf;, both represented as a binary SVR, 10-fold cross-validation is performed at the speatiog
mask. If the segment does not overlap with any ground-trutkevel. For instance, the training spectrograms, insteatief
segment for that spectrogram, its qualityois Otherwise, if  training segments, are splitinto training and validatietssA

R(Is,Ia) =

2.1. Generating Segment Hierarchy

2.2. Segment-level Quality Predictor
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model is trained on the candidate segments obtained from the| serecTsEeMENTS (Tree)
spectrograms in the training set and used to predict thétgual | H — MAXLEVEL (Tree)
of each candidate segment obtained from the spectrograms| FOR b — H=1, .., 1
in the validation set. A final segmentation result is obtdine S — {s i s.level =h, s & Tree]

for each validation spectrogram using the selection aigiori FOR A];{L ° {f S . _

. . . | - : .parent = s, r € Tree}
described in Section 2.3. The segment-level mapping score IF s.quality > AVERAGEQUALITY (R)
obtained by the evaluation metric as explained in Secti@n 3. REMOVEFROMTREE (R)
is used as the score for each model. Thparameter of the ELSE
model that achieves the maximum score is then selected. FOR ALL r € R

r.parent « s.parent
REMOVEFROMTREE (s)
RETURN Tree

2.3. Segment Selection
Fig. 4. Pseudocode for segment selection.
After all segments in the hierarchy are assigned quality
scores, we need to select a set of high-quality segments toj RN EEESTIIe
form the final segmentation result. We follow the convention 0,462 (10) 0.267 (1) 0.506 (9)
that the top level of the hierarchy contains segments oéthin
with the lowest threshold. As we move down the hierarchy,
the new segments at leviglill necessarily each be enclosed
within one of the segments in levkl— 1, which we refer to
as its parent. Given such a hierarchy, our goal is to select a
subset of high quality segments such that no two segments
in the subset should have ancestor-descendent relagonshi §}
(to avoid redundant segments). Note that the prior approach
that uses a global threshold corresponds to selecting a fixed
level in the hierarchy for all spectrograms. Our approach
not only allows different levels to be selected for differen
spectrograms, but is also capable of selecting segmemts fro
different levels within the same spectrogram.

0.608 (1)

Our selection algorithm starts from the lowest level (i.e.
segments obtained with the highest threshold). At each Iev;e:ig' 5. The final result of applying the proposed method to
h, the average quality of segments belonging to the same Paka probability map in Fig. 1.
ent is compared to the quality of the parent segment. If the
parent’s quality is higher than the children’s average ital
the children are removed from the tree. Otherwise, the par- 3. EVALUATION
ent is removed and the children are assigned to the parent’s
parent. The intuition behind our algorithm is that if the ave |n this section, we empirically evaluate our proposed metho

age quality of the children is lower than the parent, then anyand compare it to prior work on supervised segmentation.
solution containing the children will likely to be sub-aptl

since replacing them with the parent will likely improve the
overall quality. Similarly, if the parent scores lower thiue

average of its children, any solution containing the panéiht  Fqr each spectrogram, the system-generated binary mask is
likely be improved by substituting it with its children. The gyajyated against the ground-truth mask annotated mgnuall
pseudocode for the algorithm is presented in Fig. 4. by human. Two types of metrics are used in the evaluation.
The final result of applying our proposed method is dis-  Pixel-level measure We assess the pixel-level quality of
played in Fig. 5. The top spectrogram contains the birdhe system-generated binary mask by computing its True Pos-
song segments extracted by our method. Each segmentiive Rate (TPR) and False Positive Rate (FPR) compared to
labeled with its predicted quality and its level in the seg-the ground-truth. This is a standard measure that has been
mentation hierarchy in parentheses. The second speatnogravidely used to evaluate the quality of segmentation results
shows the ground-truth mask, while the third and last specat the pixel level. One limitation of this measure is that it
trograms show the binary segmentation masks generated Egils to capture how well the system-generated segmentatio
our method and the algorithm presented in [8] withO  matches the ground-truth at the segment level. For example,
threshold, respectively. consider two different segmentation results. In the firg,@n

3.1. Evaluation Metrics

765



ground truth segment is split into two closely-spaced senall a good trade-off between TPR and FPR, and the top segment-

segments. In the second result, the segment is slightlynkhru level quality score amongst the different choiceg# oiWhen

in size, but remains to be a single segment. The pixel-levedvaluated at the pixel level, our method is comparable i t

measure will produce very similar TPR and FPR. Howeverbaseline methods, consistent with the general trend oifigad

conceptually, the second resultis much preferable sifmtit  off TPR and FPR. This is not surprising, because fundamen-

ter maintains the integrity of the segment. tally we use the same pixel-level predictor. At the segment
Segment-level measureTo address the limitation of the level, however, our method achieves far superior perfooman

pixel-level measure, we design a novel segment-level yuali than the baseline methods, regardless ofthaue. This sug-

measure, calledegment mapping scorevhich forces a one- gests that by learning from the segment level, the proposed

to-one mapping between the system-generated and grourabproach was able to produce better overall segments despit

truth segments. Specifically, for each spectrogram, a confiaving no gain at the pixel level.

plete bipartite-grapli = (Vs, Vs, E) is constructed, where

each element iVs represents a system-generated segment 4. CONCLUSION AND FUTURE WORK

and each element il represents a ground-truth segment,

and|Vs| = |[Ve| = Ny = max(Ns, Ng), with Ns andNe  We proposed a supervised hierarchical segmentation method

the number of system-generated and ground-truth segments, extract bird song segments from noisy recordings. The

respectively. IfNs < Ny, then dummy nodes are appendednovel contributions of our work are:

to Vs so that]Vs| = Ny, and similarly forV. The value for _ _ _ _

each edge,; € E is the overlap ratio between € Vg and ~ ® We mtrqduced a hierarchical segmentation meth_od that

v; € Vg in the spectrogram. If one of the nodesor e; is allows bird song segments to be extracte(_j w!th different

a dummy nodeg;; = 0. Then, we find a maximum bipartite Fhresholds. Thls is p.artlcularly. useful for in-situ rgcord

matching betweeis and V. Thesegment mapping score  INgS where different bird song signals may present itself at

is calculated as the average overlap ratio across all matche different strength levels.

bairs. Consider th? aforementioned example. The segmentg-we introduced a novel supervised approach for predicting
tion result that splits the ground truth segment into twd wil the quality of a segment as a whole. This is the first ef-
achieve significantly lower score compared to the single seg fort, to the best of our knowledge, that leamns to perform

ment alternative, correctly reflecting our preference. segmentation based on both segment- and pixel-level su-

pervision.
3.2. Experiment Results . o .
e We introduced an efficient bottom-up algorithm for select-

We applled our method to a set of 200 manua”y'annotated |ng Segments given a hierarchy of Segments and their pre-

10-second recordings collected with omni-directionalnmic  gicted quality scores, which has been empirically observed
phones in natural environments. The 200 recordings contain tg work well.

various levels of difficulty, from a relatively clean recard
to noisy ones with overlapping bird song segments. We also Our method is most appropriate for analyzing bird song
compare our method with the previous work in [8] as the basetecordings obtained within natural environments with vary
line. Since we do not know the optimal global threshold foring level of noise and signal strength. One potential limita
the baseline method, our experiments considered a total §on of our method is its sensitivity to the annotation qual-
five threshold values. Table 1 shows the final evaluation reity of the training annotation. If the annotations are ineom
sults. plete or inconsistent, our approach may not learn effelgtive
From the results, we can see that the pixel-level quality of uture work will investigate whether the improved segment-
the baseline method is very sensitive to the global threshol evel quality can lead to improved species classificatiauac
The value).4 as recommended by the original work achievedacy.
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