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ABSTRACT

A common framework of identifying bird species from au-
dio recordings involves detecting bird song segments, which
will be subsequently input to a classifier. In-field record-
ings are contaminated with various environmental noise.
For such recordings, supervised segmentation has been ob-
served to outperform unsupervised energy-based approaches.
Prior supervised segmentation work considers only pixel-
level predictions and ignores the supervision provided at
the segment-level. We propose a hierarchical approach that
learns to isolate bird song syllables based on both pixel-level
and segment-level information. Experimental results suggest
that our method outperforms an existing supervised method
that learns only from pixel-level supervision.

Index Terms— Audio segmentation, supervised segmen-
tation, bird species classification

1. INTRODUCTION

The field of bioacoustics studies animal vocalization to assess
biodiversity, which serves as an indicator of environmental
health. Due to its various potential benefits to society and
science, interest in bioacoustics has been steadily increasing,
mainly to help monitor and mitigate environmental impacts
resulting from human activities [1]. Among the species that
are observable in their natural habitat, birds are the most com-
monly chosen as their behavior reflects critical environmental
changes in both global and local scales [2]. Bird species clas-
sification and detection are two of the most common goals of
bird song analysis. Several studies have achieved promising
results [3–6], with each of them utilizing syllables due to their
important role as the basic building blocks of bird songs [7].

In previous work, a supervised method for extracting in-
dividual bird song segments from noisy audio recordings has
been introduced [8]. Each recording is first converted to a
spectrogram and a whitening filter is applied to normalize the
noise level. A Random Forest classifier is then trained with a
set of human-annotated spectrograms to assign a probability
for each pixel in the spectrogram belonging to bird song seg-
ments. The probability map is then smoothed with a Gaussian
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filter and thresholded with a global value to produce a binary
mask. Segments of individual syllables are then extracted as
connected components from the spectrogram based on the bi-
nary mask. While this approach has been shown to perform
well on noisy field recordings, it has two inherent limitations.
First, using a single global threshold is generally subopti-
mal because different spectrograms or even different syllables
within a single spectrogram may require different thresholds
to be extracted properly. Second, human-annotated spectro-
grams may contain valuable information about what bird song
syllables look like. Such information cannot be captured at
the pixel level, and thus not utilized by the aforementioned
method, which only learns at the pixel level.

In this paper, we propose to address these two limitations.
Specifically, we consider multiple thresholds to build a hier-
archy of candidate segments for each spectrogram. Learning
from syllable-level supervision, we train a quality predictor to
assess the quality of each candidate segment. The final seg-
ments are then identified by applying an efficient bottom-up
selection procedure to the hierarchy.

We evaluate our method both at the pixel level and
segment level using 200 field recordings. The results sug-
gest that, compared to the baseline method, our proposed
method achieves significantly better segment-level quality
while maintaining comparable pixel-level quality.

2. PROPOSED METHOD

Our proposed method takes as input the probability map gen-
erated by the Random Forest classifier in the previous work
[8]. Fig. 1 displays an example probability map generated
from a time-frequency spectrogram by the Random Forest
classifier. Our method consists of three main steps. In the
first step, we apply multiple thresholds to the input probabil-
ity map, producing a hierarchy of multiple levels of segments.
In the second step, a quality predictor is trained to assign a
score to each candidate segment in the hierarchy. The last
step selects the final segments from the hierarchy based on
the quality scores. The output of our method is a binary mask
for each spectrogram, where each connected component rep-
resents a bird song segment.
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Fig. 1. A probability map generated by the Random Forest
classifier.

Fig. 2. Several levels of segmentation hierarchy built by
thresholding the probability map in Fig. 1. Each white blob is
considered a segment. From top to bottom, the thresholds are
0.20, 0.30, 0.40, and0.60.

2.1. Generating Segment Hierarchy

Our system uses 10 thresholds (0.20 to 0.65 with 0.05 step) to
build a 10-level segmentation hierarchy for each spectrogram.
Based on empirical observations, thresholds below0.20 pro-
duce severe under-segmentation that creates large blobs of
segments, in addition to noise segments. Meanwhile, thresh-
olds above0.65 results in highly fragmented segments due to
over-segmentation. Fig. 2 shows a part of the hierarchy con-
structed for the probability map shown in Fig. 1.

2.2. Segment-level Quality Predictor

Once the hierarchy is constructed, the next step is to assessthe
quality of each segment in the hierarchy. To achieve this, the
human-annotated spectrograms are utilized to learn a regres-
sion model for predicting segment quality. To build such a
regression model, we first generate segmentation hierarchies
for the training spectrograms. For each resulting segment,we
compute a quality value (between0 and1) based on its over-
lap ratio with ground-truth segments. Consider a segmentIs
in the hierarchy of a particular spectrogram and a correspond-
ing ground truth segmentIG, both represented as a binary
mask. If the segment does not overlap with any ground-truth
segment for that spectrogram, its quality is0. Otherwise, if

Fig. 3. Alignment of a segmentIS and a templateIT based
on energy peaks.

Is overlaps with a ground-truth segmentIG, the overlap ratio
betweenIS andIG is defined as:

R(IS , IG) =

∑te
t=ts

∑fe
f=fs

I{IS(t, f) = 1 ∧ IG(t, f) = 1}
∑te

t=ts

∑fe
f=fs

I{IS(t, f) = 1 ∨ IG(t, f) = 1}
(1)

where(t, f) represents the time-frequency coordinate in the
original spectrogram. IfIS overlaps with more than one
ground truth segment, the quality is defined to be the maxi-
mum overlap ratio.

Next, we define a set of template-based features to repre-
sent the segments. We consider each ground-truth segment in
the training spectrograms as a template. Given a set of tem-
plates, to represent a segmentIS , we compute the similarity
betweenIS and each templateIT . The idea is that the ground
truth segments provide us with good examples of what bird
song segments should resemble, and how similar a segment is
to these “good examples” can be indicative of its quality. To
compute the similarity betweenIS andIT we first align them
based on their energy peaks, and compute their overlap ratio
as defined in Equation 1. Note that we only allow segments
to be aligned if their peaks’ frequency values differ no more
than 30 pixels. For such cases, the alignment process is illus-
trated in Figure 3. Since there can be more than one peak in a
segment, 3 peaks are randomly selected from the segment and
3 peaks from the template, resulting in 9 pairs of peaks. The
maximum overlap ratio between the segment and the template
aligned at those peak pairs is then used.

We build our segment quality predictor using Support
Vector Regression (SVR) [9] with a linear kernel. Each seg-
ment is represented by aNT -dimensional feature vector, with
NT as the number of templates. Depending on the number of
example spectrograms, there can be hundreds of ground-truth
segments. In our implementation, to speed up calculation and
reduce the dimension of the feature vector, the ground-truth
segments are grouped into50 clusters using theK-means
algorithm. Each cluster medoid is then used as a template.

To select the optimal regularization parameterC for the
SVR, 10-fold cross-validation is performed at the spectrogram-
level. For instance, the training spectrograms, instead ofthe
training segments, are split into training and validation sets. A
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model is trained on the candidate segments obtained from the
spectrograms in the training set and used to predict the quality
of each candidate segment obtained from the spectrograms
in the validation set. A final segmentation result is obtained
for each validation spectrogram using the selection algorithm
described in Section 2.3. The segment-level mapping score
obtained by the evaluation metric as explained in Section 3.1
is used as the score for each model. TheC parameter of the
model that achieves the maximum score is then selected.

2.3. Segment Selection

After all segments in the hierarchy are assigned quality
scores, we need to select a set of high-quality segments to
form the final segmentation result. We follow the convention
that the top level of the hierarchy contains segments obtained
with the lowest threshold. As we move down the hierarchy,
the new segments at levelh will necessarily each be enclosed
within one of the segments in levelh − 1, which we refer to
as its parent. Given such a hierarchy, our goal is to select a
subset of high quality segments such that no two segments
in the subset should have ancestor-descendent relationship
(to avoid redundant segments). Note that the prior approach
that uses a global threshold corresponds to selecting a fixed
level in the hierarchy for all spectrograms. Our approach
not only allows different levels to be selected for different
spectrograms, but is also capable of selecting segments from
different levels within the same spectrogram.

Our selection algorithm starts from the lowest level (i.e.
segments obtained with the highest threshold). At each level
h, the average quality of segments belonging to the same par-
ent is compared to the quality of the parent segment. If the
parent’s quality is higher than the children’s average quality,
the children are removed from the tree. Otherwise, the par-
ent is removed and the children are assigned to the parent’s
parent. The intuition behind our algorithm is that if the aver-
age quality of the children is lower than the parent, then any
solution containing the children will likely to be sub-optimal
since replacing them with the parent will likely improve the
overall quality. Similarly, if the parent scores lower thanthe
average of its children, any solution containing the parentwill
likely be improved by substituting it with its children. The
pseudocode for the algorithm is presented in Fig. 4.

The final result of applying our proposed method is dis-
played in Fig. 5. The top spectrogram contains the bird
song segments extracted by our method. Each segment is
labeled with its predicted quality and its level in the seg-
mentation hierarchy in parentheses. The second spectrogram
shows the ground-truth mask, while the third and last spec-
trograms show the binary segmentation masks generated by
our method and the algorithm presented in [8] with0.40
threshold, respectively.

Fig. 4. Pseudocode for segment selection.

Fig. 5. The final result of applying the proposed method to
the probability map in Fig. 1.

3. EVALUATION

In this section, we empirically evaluate our proposed method
and compare it to prior work on supervised segmentation.

3.1. Evaluation Metrics

For each spectrogram, the system-generated binary mask is
evaluated against the ground-truth mask annotated manually
by human. Two types of metrics are used in the evaluation.

Pixel-level measure.We assess the pixel-level quality of
the system-generated binary mask by computing its True Pos-
itive Rate (TPR) and False Positive Rate (FPR) compared to
the ground-truth. This is a standard measure that has been
widely used to evaluate the quality of segmentation results
at the pixel level. One limitation of this measure is that it
fails to capture how well the system-generated segmentation
matches the ground-truth at the segment level. For example,
consider two different segmentation results. In the first one, a
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ground truth segment is split into two closely-spaced smaller
segments. In the second result, the segment is slightly shrunk
in size, but remains to be a single segment. The pixel-level
measure will produce very similar TPR and FPR. However,
conceptually, the second result is much preferable since itbet-
ter maintains the integrity of the segment.

Segment-level measure.To address the limitation of the
pixel-level measure, we design a novel segment-level quality
measure, calledsegment mapping score, which forces a one-
to-one mapping between the system-generated and ground-
truth segments. Specifically, for each spectrogram, a com-
plete bipartite-graphG = (VS , VG, E) is constructed, where
each element inVS represents a system-generated segment
and each element inVG represents a ground-truth segment,
and|VS | = |VG| = NV = max(NS , NG), with NS andNG

the number of system-generated and ground-truth segments,
respectively. IfNS < NV , then dummy nodes are appended
to VS so that|VS | = NV , and similarly forVG. The value for
each edgeeij ∈ E is the overlap ratio betweenvi ∈ VS and
vj ∈ VG in the spectrogram. If one of the nodesei or ej is
a dummy node,eij = 0. Then, we find a maximum bipartite
matching betweenVS andVG. Thesegment mapping score
is calculated as the average overlap ratio across all matched
pairs. Consider the aforementioned example. The segmenta-
tion result that splits the ground truth segment into two will
achieve significantly lower score compared to the single seg-
ment alternative, correctly reflecting our preference.

3.2. Experiment Results

We applied our method to a set of 200 manually-annotated
10-second recordings collected with omni-directional micro-
phones in natural environments. The 200 recordings contain
various levels of difficulty, from a relatively clean recording
to noisy ones with overlapping bird song segments. We also
compare our method with the previous work in [8] as the base-
line. Since we do not know the optimal global threshold for
the baseline method, our experiments considered a total of
five threshold values. Table 1 shows the final evaluation re-
sults.

From the results, we can see that the pixel-level quality of
the baseline method is very sensitive to the global threshold.
The value0.4 as recommended by the original work achieves

Table 1. Evaluation of the baseline and proposed method.
Pixel Level

Segment Level
TPR FPR

Baseline (θ = 0.2) 0.889 0.051 0.211
Baseline (θ = 0.3) 0.829 0.035 0.226
Baseline (θ = 0.4) 0.761 0.024 0.226
Baseline (θ = 0.5) 0.693 0.017 0.217
Baseline (θ = 0.6) 0.619 0.012 0.203
Proposed Method 0.784 0.028 0.309

a good trade-off between TPR and FPR, and the top segment-
level quality score amongst the different choices ofθ. When
evaluated at the pixel level, our method is comparable with the
baseline methods, consistent with the general trend of trading
off TPR and FPR. This is not surprising, because fundamen-
tally we use the same pixel-level predictor. At the segment
level, however, our method achieves far superior performance
than the baseline methods, regardless of theθ value. This sug-
gests that by learning from the segment level, the proposed
approach was able to produce better overall segments despite
having no gain at the pixel level.

4. CONCLUSION AND FUTURE WORK

We proposed a supervised hierarchical segmentation method
to extract bird song segments from noisy recordings. The
novel contributions of our work are:

• We introduced a hierarchical segmentation method that
allows bird song segments to be extracted with different
thresholds. This is particularly useful for in-situ record-
ings where different bird song signals may present itself at
different strength levels.

• We introduced a novel supervised approach for predicting
the quality of a segment as a whole. This is the first ef-
fort, to the best of our knowledge, that learns to perform
segmentation based on both segment- and pixel-level su-
pervision.

• We introduced an efficient bottom-up algorithm for select-
ing segments given a hierarchy of segments and their pre-
dicted quality scores, which has been empirically observed
to work well.

Our method is most appropriate for analyzing bird song
recordings obtained within natural environments with vary-
ing level of noise and signal strength. One potential limita-
tion of our method is its sensitivity to the annotation qual-
ity of the training annotation. If the annotations are incom-
plete or inconsistent, our approach may not learn effectively.
Future work will investigate whether the improved segment-
level quality can lead to improved species classification accu-
racy.
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