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ABSTRACT

A spatial filter, with L linear constraints that are based on instan-

taneous narrowband direction-of-arrival (DOA) estimates, was re-

cently proposed to obtain a desired spatial response for at most L

sound sources. In noisy and reverberant environments, it becomes

difficult to get reliable instantaneous DOA estimates and hence ob-

tain the desired spatial response. In this work, we develop a Bayesian

approach to spatial filtering that is more robust to DOA estimation

errors. The resulting filter is a weighted sum of spatial filters pointed

at a discrete set of DOAs, with the relative contribution of each filter

determined by the posterior distribution of the discrete DOAs given

the microphone signals. In addition, the proposed spatial filter is able

to reduce both reverberation and noise. In this work, the required

diffuse sound power is estimated using the posterior distribution of

the discrete set of DOAs. Simulation results demonstrate the ability

of the proposed filter to achieve strong suppression of the undesired

signal components with small amount of signal distortion, in noisy

and reverberant conditions.

Index Terms— microphone array processing, bayesian beam-

forming, dereverberation

1. INTRODUCTION

In modern communication systems, signal extraction in noisy and

reverberant environments plays an important role. Various spatial

filtering techniques have been proposed in the past decades to ac-

complish this task. Existing spatial filters can be broadly classified

into classical spatial filters [1–4] and parametric spatial filters [5–7].

Both classes of spatial filters often require information regarding

direction-of-arrival (DOA) of the sound source(s). Classical spatial

filters generally require this information for estimating the propaga-

tion vectors (cf. [1]) or use the information to determine the time-

frequency bins where the desired source(s) are active (cf. [4]). In

parametric spatial filters, instantaneous information regarding the

source DOAs is used to compute a spatial filter that provides an ar-

bitrary desired spatial response [6–8].

In most practical cases, the DOA is often unknown and needs

to be estimated. DOA estimation methods such as MUSIC [9] and

ESPRIT [10] are often used for this task. These methods yield good

estimates when the acoustic condition is favorable, however their

performance degrades severely in noisy and reverberant conditions

[11]. The aforementioned spatial filters are known to be sensitive

to such estimation errors, which generally leads to signal distortions

and degradation of the filter performance.

∗ A joint institution of the Friedrich-Alexander-University Erlangen-
Nürnberg (FAU) and Fraunhofer Institute for Integrated Circuits (IIS).

Many adaptive beamforming algorithms have been developed

for increasing robustness to look direction uncertainty. Some pop-

ular approaches are diagonal loading based approach [12] and con-

strained minimum variance beamforming [13–16]. In these methods,

robustness is achieved at the cost of reduction in noise and interfer-

ence suppression. Statistical approaches have also been proposed to

tackle this problem [17–20]. One particular approach of interest is

Bayesian beamforming [19, 20], which focuses on DOA uncertainty

and models the DOA as a discrete random variable with a prior prob-

ability density function (pdf) over a candidate set of DOAs.

Recently in [6], a spatial filter, with L linear constraints which

are based on instantaneous DOA estimates, was proposed to capture

at most L sound sources with a desired, arbitrary spatial response

at each time-frequency instant. However, in noisy and reverber-

ant environments, it becomes difficult to get reliable instantaneous

DOA estimates. In this paper, we reformulate the approach pre-

sented in [6] and develop a Bayesian approach based on [19, 20],

that provides robustness against DOA estimation errors. In contrast

to [19,20], we aim to capture sound sources with an arbitrary spatial

response rather than extract a single source. The resulting Bayesian

filter is a weighted sum of spatial filters pointed at a discrete set of

DOAs, where the relative contribution of each spatial filter is de-

termined according to the posterior pdf of the discrete DOAs given

the microphone signals. The individual spatial filters are designed to

suppress the diffuse sound and microphone self-noise while captur-

ing the direct sound(s) with a desired spatial response, as presented

in [6]. Furthermore, a probabilistic approach to diffuse sound power

estimation is presented that improves upon the estimator presented

in [6] and gives a sufficiently accurate estimate to achieve joint dere-

verberation and noise reduction. The presented simulation results

demonstrate the improvement we achieve over the filter presented

in [6] and also shows the ability of the proposed filter to achieve

strong suppression of the undesired signal components with small

amount of signal distortion, in noisy and reverberant conditions.

2. PROBLEM FORMULATION

Let us consider a uniform linear array (ULA) of M microphones lo-

cated at d1...M . For each time-frequency instant we assume that the

sound field is composed of at most L < M plane waves propagating

in an isotropic and spatially homogeneous diffuse sound field. The

vector of received signals, y(n, k) = [Y(n, k, d1) . . . Y(n, k, dM )]T ,

at time frame n and frequency bin k is given by

y(n, k) =

L∑

l=1

xl(n, k)

︸ ︷︷ ︸
x(n,k)

+xd(n, k) + xn(n, k), (1)
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where xl(n, k) = [Xl(n, k,d1) . . . Xl(n, k,dM )]T contains the

microphone signals corresponding to the l-th plane wave, xd(n, k)
denotes the diffuse sound field, which models the reverberation,

and xn(n, k) is the spatially uncorrelated and stationary microphone

self-noise. The sound pressure corresponding to the l-th plane wave,

i.e., the directional sound xl(n, k) is given by

xl(n, k) = a(θl, k)Xl(n, k, d1), (2)

where θl(n, k) is the DOA of the l-th plane wave (θ = 90 denotes

the array broadside). For a ULA with omnidirectional microphones,

the m-th element of the steering vector a(θl, k) is given by

am(θl, k) = exp{−jκrm cos θl(n, k)}, (3)

where rm is the distance between the first and the m-th microphone,

and κ denotes the wavenumber.

Assuming the three components in (1) to be mutually uncorre-

lated, the power spectral density (PSD) matrix of the microphone

signals can be expressed as

Φy(n, k) = E{y(n, k)yH(n, k)} (4)

= Φx(n, k) +Φd(n, k) +Φn(n, k)︸ ︷︷ ︸
Φu(n,k)

, (5)

with

Φx(n, k) =

L∑

l=1

φl(n, k)a
H(θl, k)a(θl, k), (6)

Φd(n, k) = φd(n, k) Γd(k), (7)

Φn(n, k) = φn(n, k) I, (8)

where I is an identity matrix, φn(n, k) denotes the expected self-

noise power, which is identical for all microphones, φd(n, k) is the

expected power of the diffuse sound field and φl(n, k) denotes the

expected power of the l-th plane wave as received by the first micro-

phone. The diffuse sound PSD Φd(n, k) and the microphone self-

noise PSD Φn(n, k) are summed to get Φu(n, k), which denotes the

PSD matrix of the undesired signals. The ij-th element of the coher-

ence matrix Γd(k), denoted by γij(k), is the diffuse field coherence

between microphone i and j. In this work, we assume a spherically

isotropic diffuse sound field, which gives γij(k) = sinc(κrij) [21]

with wavenumber κ and rij = ‖di − dj‖2.

The aim of this work is to capture the directional sounds from

a specific spatial region with a specific gain while attenuating the

diffuse sound and microphone self-noise. The desired signal can be

expressed as

Z(n, k) =
L∑

l=1

G(θl, k)Xl(n, k, d1), (9)

where G(θl, k) is a real-valued arbitrary directivity function which

can be designed based on the target application. The proposed ap-

proach for estimation of the desired signal is presented in the next

section. A block scheme of the complete system is depicted in Fig.1.

3. BAYESIAN SPATIAL FILTER

Given the TF dependent DOAs θ1, . . . , θL, the desired signal

Z(n, k) can be estimated using a linearly constrained minimum

variance (LCMV) filter with L constraints which are based on in-

stantaneous narrowband DOA estimates. As the DOAs are TF

dependent, a narrowband DOA estimator was employed in [6]. Any

DOA estimation errors can result in an error in the estimation of

Z(n, k). To increase the robustness in noisy and reverberant envi-

ronments in which the estimation of the DOAs is more challenging,

we propose a Bayesian approach for spatial filtering.

In the following, the DOA is modeled as a discrete random vari-

able with a prior pdf p(θ) over a candidate set Θ = {θ1, θ2, . . . , θI},

where I ≫ L. An approximation of the desired signal in (9) is given

as a weighted sum of spatial filters pointed at a discrete set of DOAs,

which are combined according to the value of the posterior pdf for

each look direction [19], i.e.,

Z̃(n, k) =
I∑

i=1

p(θi|y(n, k))Ẑ(θi, n, k), (10)

where p(θi|y(n, k)) is the a posteriori pdf of the direction θi given

the microphone signals, and Ẑ(θi, n, k) is an estimate of the direc-

tional sound(s), with a specific gain, from the direction θi ∈ Θ.

Since the spatial filtering is performed for each DOA in the dis-

crete set Θ, the directional information corresponding to the L plane

waves are not incorporated into the design of the filters. Instead,

a single directional constraint, based on the value of the directivity

function G corresponding to each element in the set Θ, is incorpo-

rated for the individual spatial filters. Therefore, the formulation in

(10) only provides an approximation of the desired signal, given by

(9). This formulation can potentially suffer from performance degra-

dation, especially in terms of speech distortion, for applications that

require high suppression of directional interferences.

The computation of the parameters in (10) is presented in the

subsequent sections. In the following, the dependency of the steer-

ing vector a(θ, n, k) and the PSD matrices Φ(n, k) on n and k is

omitted, wherever possible, for brevity.

3.1. Spatial filter

The conditional estimate of the desired signal Ẑ(θi, n, k) can be

given by a weighted sum of the microphone signals y(n, k), i.e.,

Ẑ(θi, n, k) = E{Z(n, k)|θi} = w
H(θi, n, k)y(n, k), (11)

where w(θi, n, k) is a complex weight vector of length M for a

spatial filter pointed at the direction θi. The weights w(θi, n, k)

to compute Ẑ(θi, n, k) can be found by minimizing the sum of the

diffuse sound power and the self-noise power at the filter’s output

[6], i.e.,

w(θi, n, k) = arg min
w

w
H
Φuw (12)

subject to

w
H(θi, n, k)a(θi) = G(θi, k). (13)

The solution is given by

w(θi, n, k) =
Φ−1

u a(θi)

aH(θi)Φ
−1
u a(θi)

G(θi, k). (14)

Substituting (14) in (11), we obtain the estimated desired signal for

each look direction θi ∈ Θ.

3.2. Computation of the posterior probability density functions

Using Bayes theorem, the posterior pdf for each θi is given by

p(θi|y(n, k)) =
p(θi)p(y(n, k)|θi)∑I

i=1 p(θi)p(y(n, k)|θi)
, (15)
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Fig. 1. The Bayesian spatial filter processing blocks.

where p(y(n, k)|θi) is the likelihood of the observed data samples

given the look direction is θi. The prior probability p(θi) is based

on the available prior information regarding the source direction. In

this work, we consider it to be uniform over the DOA candidate set

Θ, since we assume no prior knowledge regarding the DOAs.

Assuming the microphone signals are generated from a complex

Gaussian random process, the likelihood is given by

p(y(n, k)|θi) =
1

πM |Φy(θi)|

× exp
(
−y(n, k)H

Φ
−1
y (θi)y(n, k)

)
· (16)

The determinant |Φy(θi)| is given by

|Φy(θi)| = |Φu|(1 + σ
2
x(θi)a

H(θi)Φ
−1
u a(θi)), (17)

where σ2
x(θi) is the power of the signal from θi. In this work, we es-

timate σ2
x(θi) using the minimum variance spatial spectral estimate

at θi [22], given by

σ
2
x(θi) =

1

a(θi)HΦ−1
y a(θi)

· (18)

Using the matrix inversion lemma [23], we can write the inverse term

Φ−1
y (θi) as

Φ
−1
y (θi) = Φ

−1
u −

σ2
x(θi)Φ

−1
u a(θi)a

H(θi)Φ
−1
u

(1 + σ2
x(θi)aH(θi)Φ

−1
u a(θi))

· (19)

Using the estimate of the signal power σ2
x(θi) from (18), we com-

pute the determinant |Φy(θi)| using (17), the inverse term Φ−1
y (θi)

using (19), and substitute the values into (16) to obtain the likeli-

hood.

For computing the weights for the individual spatial filters, pre-

sented in Section 3.1, and the posterior probabilities for each θi, we

need to estimate the PSD matrix for the undesired signals Φu(n, k).
Given the formulation in (7) and (8), we need to estimate the dif-

fuse sound power φd(n, k) and the microphone self-noise power

φn(n, k). The estimation of the diffuse sound power is discussed

in the next section.

4. DIFFUSE SOUND POWER ESTIMATION

To estimate the diffuse sound power φd(n, k), we use an approach

similar to the diffuse-to-noise ratio (DNR) estimation method pre-

sented in [6], where an auxiliary spatial filter was used which can-

cels the L plane waves such that only diffuse sound is captured. The

direction of the L plane waves was found using the subspace method
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Fig. 2. Directivity function G(θi, k) and the source positions.

ESPRIT [10]. Based on these estimates, the look direction of the fil-

ter was computed as the direction that has the largest distance to all

the estimated DOAs. In this work, we develop a probabilistic ap-

proach to find these directions and estimate the diffuse sound power,

as explained in the following.

The weights of this spatial filter are found by maximizing the

white noise gain (WNG) of the array, i.e.,

wd = arg min
w

w
H
w (20)

subject to

w
H
a(θlmax) = 0, l ∈ {1, . . . L}, (21)

w
H
a(θmin) = 1, (22)

where the directions θlmax are the DOAs of the L plane waves, and

θmin denotes the direction from which we want to capture the diffuse

sound. To obtain these directions, we compute an approximation of

the posterior pdfs p(θi|y(n, k)), explained in Section 3.2, by replac-

ing Φu with Φd(n−1)+Φn, where Φd(n−1) = φd(n−1, k)Γd(k).
The computed approximation is denoted by p̄(θi|y(n, k)).

With this approximation, θmin is obtained as the direction with

the lowest probability of being one of the L plane wave DOAs, i.e.,

θmin = arg min
θi∈Θ

p̄(θi|y(n, k)). (23)

The DOAs of the L plane waves θlmax are obtained by selecting

the directions θi ∈ Θ corresponding to the L local maximas in

p̄(θi|y(n, k)).
Given the filter weights wd for the auxiliary spatial filter, the

output power of the filter is given by

w
H
d Φywd = φd(n, k)w

H
d Γd(k)wd + φn(n, k)w

H
d wd. (24)

Therefore, the diffuse sound power is given by

φd(n, k) =
wH

d Φywd − φn(n, k)w
H
d wd

wH
d Γd(k)wd

. (25)

5. PERFORMANCE EVALUATION

In this section, we first compare the performance of the proposed

approach for diffuse sound power estimation (Section 4) to the ap-

proach presented in [6]. Then, we compare the performance of

the proposed Bayesian spatial filter (Section 3) with the informed

LCMV filter [6], and a variant of the informed LCMV filter where

the DOAs of the L plane waves are estimated by selecting the di-

rections θi ∈ Θ corresponding to the L local maximas in the pos-

terior pdfs p(θi|y(n, k)). The variant of the informed LCMV filter

is presented to demonstrate the advantage of incorporating the pos-

terior pdfs over the whole set of DOAs Θ in our proposed approach.

The performance of these spatial filters is evaluated for two different

acoustic conditions, Scenario I and II.
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5.1. Setup and parameters

We assume L = 2 plane waves in the signal model in (1) and a

ULA with M = 5 omnidirectional microphones where the inter-

microphone distance is 3.5 cm. We simulate a reverberant shoe-

box room (7.0 × 5.4 × 2.5 m3), with RT60 ≈ 260ms for Sce-

nario I and RT60 ≈ 450ms for Scenario II, using the image-source

method [24,25]. White Gaussian noise was added to the microphone

signals resulting in a segmental signal-to-noise ratio (SSNR) of 27
dB and 17 dB for Scenario I and II, respectively. For both scenar-

ios, two speech sources are placed at a distance of 1.8 m at angles

θA = 135◦ and θB = 45◦, respectively (cf. Fig. 2). The microphone

signals consist of 1 s silence followed by 2 s single talk (Source A),

2 s double talk (Source A and B), and 2 s single talk (Source B). The

sampling rate was Fs = 16 kHz and we use a 512-point short-time

Fourier transform (STFT) with 50% overlap to transform the signal

into the time-frequency domain. For all the spatial filters, the dif-

fuse sound power φd(n, k) is estimated using the proposed method

in Section 4. The microphone self-noise power φn(n, k) is computed

from the silent section at the beginning. The expectation in (4) is ap-

proximated by a recursive temporal average over τ = 50ms. For

the proposed Bayesian filter, we consider I = 37 discrete DOAs in

the set Θ, i.e., we consider a resolution of 5 degrees over the whole

range θ ∈ [0◦, 180◦]. We consider the directivity function G(θi, k)
given in Fig. 2, i.e., we aim to capture source A with no distortions

while attenuating the power of source B by 21 dB.

5.2. Diffuse sound power estimation performance

The proposed approach for diffuse sound power estimation is com-

pared with the approach presented in [6] for the more reveberant

environment in Scenario II. Fig. 3 shows the estimation error with

respect to the true φd(n, k) for both the methods, in terms of the

log spectral distance (LSD) across frequencies [26]. Since both the

filters are based on canceling the L plane waves and capturing only

diffuse sound, they have higher estimation errors at lower frequen-

cies. The proposed probabilistic approach obtains an overall lower

estimation error. Due to the incorporated temporal averaging pro-

cess, the proposed method has a limited temporal resolution. Never-

theless, the estimated φd(n, k) is sufficiently accurate as shown by

the following results.

5.3. Spatial filter performance

Tables 1 and 2 summarize the performance of all the spatial filters

for Scenario I and II, respectively, in terms of signal-to-interference

ratio (SIR), signal-to-reverberation ratio (SRR), SSNR, PESQ and

the mean log spectral distortion (mLSD) at the filter’s output. The

values are computed over the more difficult double talk part. The

mLSD is a measure for characterizing the distortion of the desired

signal by the filter and is computed as shown in [7]. For a detailed

SIR [dB] SRR [dB] SSNR [dB] PESQ mLSD

Unprocessed 0 −6.0 27 1.88 −

wiLCMV1 22 2.0 26 2.60 2.55

wiLCMV2 18 0.0 24 2.53 1.22

wMP1 21 1.0 26 2.42 3.30

wMP2 12 −1.7 22 2.40 2.10

wBayesian 22 1.5 27 2.75 2.10

Table 1. Performance of all spatial filters for Scenario I.

SIR [dB] SRR [dB] SSNR [dB] PESQ mLSD

Unprocessed 0 −9.0 17 1.78 −

wiLCMV1 18 −1.6 16 2.30 2.83

wiLCMV2 16 −3.4 14 2.25 1.56

wMP1 18 −2.3 16 2.20 3.50

wMP2 10 −4.3 13 2.20 2.36

wBayesian 20 −1.9 19 2.44 2.16

Table 2. Performance of all spatial filters for Scenario II.

evaluation, we also present the performance of the informed LCMV

filters for the single wave assumption, i.e., L = 1. In the following,

and in Tables 1 and 2, the proposed filter is denoted by wBayesian. The

informed LCMV filter proposed in [6] is denoted by wiLCMV1 and

wiLCMV2 for L = 1 and L = 2, respectively. Similarly, the variant

of the informed LCMV filter where the DOA of the plane waves are

estimated based on local maximas in p(θi|y(n, k)) are denoted by

wMP1 and wMP2.

For Scenario I, wBayesian and wiLCMV1 provide the best perfor-

mance in terms of SIR (directional interference suppression), SRR

(dereverberation) and SSNR (noise reduction). However, for the

more adverse acoustic condition in Scenario II, wBayesian outperforms

all other filters in terms of SIR and SSNR, while achieving an SRR

comparable to wiLCMV1. In terms of mLSD (signal distortion), for

both scenarios, the proposed filter wBayesian performs worse com-

pared only to wiLCMV2. In terms of PESQ, all the filters improved the

signal compared to the unprocessed signal, with the most improve-

ment achieved by wBayesian for both scenarios. The performance of

the local maxima based informed LCMV filters wMP1 and wMP2 is

inferior compared to other filters.

In general, the results in Tables 1 and 2 show that, for both sce-

narios, wBayesian achieves a stronger/equally strong suppression of

the undesired signal components compared to the other filters, while

introducing a higher signal distortion compared only to wiLCMV2.

Therefore, the proposed Bayesian spatial filter yields the best overall

performance, especially for the highly reverberant and noisy acous-

tic condition in Scenario II.

6. CONCLUSIONS

A Bayesian approach to spatial filtering for capturing directional

sound sources with a desired, arbitrary spatial response at each time-

frequency instant was presented. Furthermore, a probabilistic ap-

proach to diffuse sound power estimation was also presented, that for

the considered scenario provided a slightly more accurate estimate

compared to a recently proposed non-probabilistic approach. Simu-

lation results for two different acoustic conditions demonstrated the

proposed filter’s robustness to DOA estimation errors and its ability

to achieve strong suppression of undesired signal components, while

introducing small amount of distortion to the desired signal.
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