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ABSTRACT

Impulse response shaping is a technique for partly equal-
izing impulse responses. In acoustics, it can be used for
the reproduction of audio signals mitigated by distortions
in a room. The most significant phenomenon among the
distortions is reverberation, a straightforward characteri-
zation of which is the room impulse response. Room re-
sponses can be characterized but could contain measure-
ment errors or noise. In addition, room responses vary
with changes in atmospheric conditions such as temper-
ature and humidity and also due to change in positions
inside a room. The design of a shaping filter robust to
at least some of these variations is likely to be very use-
ful, which is considered in this work. The method uses a
computationally efficient approach based on Basis Pursuit
DeNoising (BPDN).

Index Terms— Sparse estimation, acoustic impulse
response shaping, cross-talk, direct response, fast Dual
Augmented Lagrangian Method (fast DALM)

1. INTRODUCTION

Acoustic impulse response shaping may be used to selec-
tively equalize the effects of reverberation to points inside
a room. It can be applied to single channel equalization
and also multi-channel equalization and cross-talk cance-
lation. The shaping filters are implemented as pre-filters,
placed before the loudspeakers, so that the listener hears
sound that are perceptually improved. The technique can
be framed as an optimization problem, that involves the
minimization of a norm of some constraints involving
shaping filters. In this paper, we propose a computa-
tionally efficient approach for robust impulse response
shaping, based on an `1-norm approach. The constraints
are chosen so as to maintain the direct path and the early
reflections, that are perceptually useful [1], penalizing
late reverberation that distort the signal. Cross-talk can-

celation formulations that use a minimax approach to
minimize the `∞-weighted norm of the error between the
shortened response and a desired response are presented
in [2, 3]; [2] addresses both cross-talk cancelation and
impulse response shortening jointly. A different formu-
lation based on the categorization of the room response
into wanted part (direct path and early reflections) and
unwanted part (late reverberation), which minimizes the
ratio between the two parts, is presented in [4, 5]. It uses
a gradient descent-based approach to find a feasible solu-
tion. A robust implementation based on this formulation
is proposed in [6, 7], in which the shortening filter de-
sign is performed over multiple microphone positions at
a radius from actual position, so that the filter is robust
to small changes in microphone position. This approach
utilizes a detailed theoretical analysis of the errors due
to inaccurate measurements and small changes in micro-
phone positions in [8]. Another robust formulation is to
extend Relaxed Multichannel Least Squares (RMCLS) to
control the level of coloration to maintain robustness in
the presence of system identification errors (SIE) [9].

The work presented in this paper uses a computation-
ally fast method [10] based on sparse estimation for a
robust implementation. Shaping filters robust to changes
in microphone positions are designed by averaging over
channel realizations at multiple microphone positions
as in [6]. Computational efficiency is an important re-
quirement for a practically realizable shaping approach
as typical room responses may have tens of thousands of
samples resulting in huge optimization problems. In im-
pulse response shaping, it is challenging to achieve both
high computational speed and good performance, which
is tackled here using a sparse approach. This paper is
organized as follows. Section 2 formulates the optimiza-
tion problem and the application of sparse estimation to
acoustic impulse response shaping. Section 3 discusses
the experimental results. The approach is shown to be
more robust than both conventional shaping and inverse
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filtering using a plot of cumulative density function (CDF)
of cross-talk over a number of microphone positions.

2. PROBLEM DEFINITION

Acoustic room impulse response shaping can be achieved
by solving an optimization problem to find a set of shap-
ing filters, to reduce the unwanted effects of reverbera-
tion in the room and cross-talk from the microphones.
In cross-talk cancelation problem, signals of s sources
are delivered to m microphones through l loudspeakers.
Consider the system shown in Fig. 1. Let L be the num-

Fig. 1: A loudspeaker and microphone setup showing
acoustic channels cml and cross-talk cancelation filters
hls

ber of loudspeakers and M the number of microphones.
The particular case for L = 3 and M = 2 is shown in
Fig. 1. Here, cml represents the channel response from
loudspeaker l to microphone m and hls represents the
cross-talk canceling filter from source s to loudspeaker
l.

For each path, the combined filter and channel re-
sponse (called the Global Impulse Response, GIR) rms

is found [2] as the sum of the convolutions of cml and
hls over all the loudspeakers. For the special case shown
in Fig. 1, a matrix equation for GIR’s can be written as
r = Ch or

r11r21r12
r22


4Nr×1

=

[
C 0
0 C

]

h11

h21

h31

h12

h22

h32


6Nh×1

(1)

whereNh is the length of each shaping filter hls,Nr is the
length of each GIR rms and C is the matrix defined as

C =

[
C11 C12 C13

C21 C22 C23

]
(2)

of dimensionNrM×NhL, consisting of the Toeplitz con-
volution matrices Cml. The optimization problem to be

solved for finding the vector of shaping filters (h) given
by

min
h

‖W (Ch− r)‖22 + λ‖h‖1 (3)

where h and r are defined as in (1) and W is a diago-
nal weighting matrix defined in [2]. The `1-norm of the
variable to be estimated is the regularization term that en-
sures a sparse solution [11] and the `2-norm representing
the constraint is the fidelity factor. λ is a regularization
parameter that decides the relative importance of the two
terms. The weighting coefficients are chosen so as to pe-
nalize the cross-talk (rms, m 6= s) and late reverbera-
tion and pre-echo in the direct channels (rmm) heavily,
but penalize the early reverberations lightly [2, 4]. The
`1-regularized `2-norm minimization is chosen for com-
putational efficiency reasons [10].

2.1. Sparse Approach

A sparse vector is one that has few non-zero elements.
The sparse approach was adopted here for two reasons.
First, using a regularized `1-norm of h improves the
robustness of the solution by reducing the energy of h
(though not as directly as does the `2-norm). Second,
this allows use of the high computational efficiency and
speed of iterative sparse reconstruction algorithms like
fast DALM [12–14] to estimate a feasible solution for h.
Computational efficiency is important because a realistic
adaptive shaping approach has to deal with long room
responses. The convolution matrices may then contain
billions of elements. Such problems can lead to long ex-
ecution times when the previously published approaches
are used. In addition to computational efficiency and low
energy filters, the sparse approach also allows sufficient
length in h to control long delays in c, but with fewer
non-zero taps.

The sparse approach finds a sparse estimate for h that
solves the minimization problem posed in (3). The so-
lution can be sparse if the length of h (all the filters hls

concatenated) is greater than that of r (all the GIRs rms)
so that the matrix C becomes an overcomplete dictionary
[15]. The sparse estimation problem, thus, tries to find a
sparse estimate for h that satisfies the equation Ch = r
with minimum error [15]. This is done by minimizing an
objective function as in (3) which is known as Basis Pur-
suit DeNoising (BPDN). This optimization problem can
be solved in a computationally efficient manner by us-
ing iterative sparse reconstruction algorithms such as Fast
DALM [12] and FISTA [16].

2.2. Algorithm

The sparse reconstruction algorithm used is Fast DALM
[12]. The algorithm minimizes the augmented dual of the
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objective function of (3) given by [12]

min
h,y,z:z∈B∞1

−WrT y − hT (z −WCT y)+

β

2

∥∥∥z −WCT y
∥∥∥2
2
+
λ

2
yT y

(4)

where B∞1 is the B1 ball [12, 13], y is a dual variable, z
is the dual variable corresponding to projection onto the
B1 ball, β is a regularization parameter and the third term
containing an `2-norm is the augmentation term. The al-
gorithm can be summarized as a set of iterative equations
[12]. We use a Fourier implementation to replace mul-
tiplication by convolution matrices, improving computa-
tional speed further.

The approach in (3) can be extended to a robust esti-
mation approach by performing the design over multiple
realizations of each microphone position, so that the esti-
mate is robust to perturbations of the microphone position
[6]. The positions are taken to be within a fixed radius
around the expected microphone positions [8] so that the
estimate is still accurate for slight movement of the micro-
phone within the radius. The objective function for such
an implementation can be written as

min
h

N∑
n=0

∥∥∥W (C(n)h− r)
∥∥∥2
2
+ λ‖h‖1 (5)

where C(n) are the Toeplitz matrices generated from the
perturbed as well as the actual channels andN is the num-
ber of perturbed channels. The perturbed channels are
generated as

c(n) = c(0) + p(n) (6)
where p(n) are the perturbations and c(0) is the unper-
turbed room response. The perturbations are generated
by performing frequency and time shaping on white
Gaussian noise to generate the perturbation character-
istics. The frequency domain shaping is performed by
multiplying the Fourier Transform of the Gaussian noise
[8] by the power spectrum at perturbed positions in a
diffuse field

P (ω) = ‖C(ω)‖

√
2− 2sinc

(
ωd

v

)
(7)

where d is the microphone displacement and v is the
speed of sound. The Inverse Fourier Transform of the fre-
quency shaped response is multiplied by the time shaping
function [6] given by

p(t) =


0 t < t0 − d/v
1 t0 − d/v < t < t0 + d/v

e
−3ln(10)(t−t0−d/v)

T60 t ≥ t0 + d/v
(8)

Table 1: Performance for different microphone displace-
ments for a channel of length 104

d Nh λ CDR (dB)
1 5× 104 0.02 -44
2 5× 104 0.02 -40
4 5× 104 0.02 -33

where t0 is the time taken by the direct component. This
two step iteration generates channel responses syntheti-
cally with same acoustic properties as the room responses.

3. EXPERIMENTAL RESULTS

The robust problem in (5) was tested for channels mea-
sured in a small room at sampling rates of 16 kHz and
44.1 kHz with L = 3, M = 2 and N = 14. The syn-
thesized positions were considered in a circle around the
original microphone positions at specific displacements d
of 1 cm, 2 cm and 4 cm for the robust filter estimation. The
typical estimation results using a sampling rate of 16 kHz
are tabulated in Table 1. The weighting matrix W was
set according to [2]. The initial values for the algorithm
were set as a delta function for each of the inverse filers.
The performance metric used in this work is the Cross-
talk to Direct Response ratio (CDR) which is the ratio of
maximum cross-talk to maximum direct response (inverse
of DSCR in [7]). The performance of the algorithm was
tested for different values of the control parameter λ, as
can be seen from Table 1. The simulations were run on a
desktop computer with 4 GB RAM and 3 GHz Intel Pro-
cessor using Matlab R2012b. The feasible values for λ
for this problem were in the range 0 ≤ λ ≤ 0.2. In this
paper, we used λ = 0.02. Also, the results show that fast
DALM performs quite well for the robust problem, with
good crosstalk cancelation of around −40 dB, in addition
to fast convergence.

From Table 1, it can be seen that the typical CDR
value for the robust implementation is around −40 dB,
which is almost 20 dB better than the values for the `2-
norm implementations provided in [7]. For the imple-
mentations without considering spatial mismatch, CDR
was found to be around −50 dB which is comparable to
the values for the `p-norm implementations provided in
[7]. The execution time taken for robust implementation
with Nr = 10 000 as in [7] was 1 minute, while for the
non-robust shaping, it took 8.9 s. For the results shown
in Table 1 with Nr = 60 000, the computational time
taken in all three cases were less than 10 minutes. For
the non-robust shaping, the execution time was observed
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Fig. 2: Crosstalk responses for Nr = 5000 and Nc =
1500
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Fig. 3: Shaped direct responses for Nr = 5000 and Nc =
1500

to be 247 s. Thus, these results show that the sparse ap-
proach for shaping filter design provide good performance
with results comparable to [7] in addition to high compu-
tational efficiency.

Typical plots obtained for cross-talk and shaped re-
sponses are shown in Fig. 2 and Fig. 3 respectively. The
shaped responses in Fig. 3 shows the peak is around 10 dB
above the smaller values and the response decays rapidly
after the allowed early reflections. The shaping approach
maintains the direct path (peak) and some of the early re-
flections whilst reducing late reverberation, thus achiev-
ing good shaping. Fig. 4 shows the objective function
value in dB versus iteration number demonstrating the fast
convergence of fast DALM. Fig. 4 also shows the maxi-
mum cross-talk to maximum direct response ratio in dB
with iteration number, demonstrating the cross-talk can-
celation performance of the algorithm.

The cumulative density function of the CDR values
were plotted for the original channel and the 14 perturbed
versions (Fig. 5) to study the efficacy of the robust im-
plementation. The plots show that the robust implemen-
tation (blue) shows satisfactory performance at the orig-
inal as well as perturbed positions. If the filters are de-
signed only using the measured channel, the performance
at the perturbed channels is shown in green. This demon-
strates the value of optimising over perturbed channels so
as to generate a robust solution. Classical channel inver-
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Fig. 5: Cumulative density functions of CDR at the orig-
inal and perturbed positions for Nr = 9600 and Nc =
4000

sion [17] provides considerably degraded cross-talk can-
celation compared to the channel shaping approach at the
perturbed positions. Thus, it was concluded that sparse
shaping filter design over multiple positions is an efficient
method for robust acoustic crosstalk cancelation and GIR
shaping.

4. CONCLUSION

A robust approach using sparse estimation of inverse fil-
ters for acoustic crosstalk cancelation is discussed in this
paper. The optimization problem is solved using an iter-
ative sparse reconstruction algorithm called fast DALM,
which is demonstrated to be effective in impulse response
shaping and crosstalk cancelation. It was found that this
algorithm performed well, providing good cross-talk can-
celation and GIR shaping at the original as well as per-
turbed microphone positions, in addition to faster com-
putation compared to gradient projection method, previ-
ously used for solving this problem. Therefore, it was
concluded that the sparse robust shaping filter design us-
ing fast DALM as estimation algorithm is a good choice
for crosstalk cancelation and impulse response shaping.
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