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ABSTRACT

Estimating room impulse responses (RIRs) has a number of ap-
plications, including personalized audio, analyzing and improving
acoustic behavior of concert halls, listening room compensation,
sound source localization, and many others. RIRs have been esti-
mated in essentially the same fashion for the last 50 years: Compute
the cross correlation between a signal played at point A, and the
signal received at point B. Best results are obtained when the signal
played is white noise, or a maximum length sequence. No prior
knowledge is exploited in computing the RIR, which is simply
assumed to be the cross correlation between played and received
signals. In contrast, research in adaptive RIR estimation (a.k.a.
adaptive Acoustic Echo Cancellation) has made huge progress by
(among other things) incorporating models for the RIR. In this paper
we propose a new RIR estimation technique, based on a maximum
a posteriori formulation. More specifically, we estimate the room
reverberation time, as well as the room noise level, and use those as
priors for the RIR estimation. Comparison with ground truth shows
an average improvement of 12 dB compared to traditional methods.

Index Terms— RIR, room acoustics, room impulse response,
AEC, echo cancellation.

1. INTRODUCTION

When a sound is played within an enclosure (e.g., a room), it propa-
gates in very complex ways. It reflects off walls and other surfaces,
it diffracts, it is absorbed by air and by these surfaces, and does all
that in a frequency dependent manner [1, 2]. In general, this is fur-
ther complicated by the directionality of the sound source as well
as the directionality of the capturing device (e.g., a microphone or
the human ear) [3]. Thus, typically, even if the exact geometry of a
room is known, modelling the transfer function between two points
in a room is extremely hard, except for crude approximations.

Knowledge of that transfer function is, however, extremely use-
ful in a number of scenarios. Common application include acous-
tic echo cancellation (AEC) [4, 5, 6, 7], personalized audio [8, 9],
analysing and improving acoustic behaviour of concert halls [10,
11], listening room compensation [12, 13, 14], sound source local-
ization [15, 16, 17], and many others [18, 19, 20, 19, 21].

Due to the aforementioned difficulty in modeling acoustic be-
havior, room impulse responses (RIR) are typically experimentally
measured directly in the real environment [22]. More specifically, a
sound source and a microphone are placed at each end-point, a sound
is played and recorded, and that recorded signal is used to compute
(an estimate of) the RIR between those two points1. Furthermore,

1In applications like AEC, the path of interest in is between the loud-

if we need estimates of the RIR in points other than the measured
ones, RIR interpolation may be needed, which is, in itself, another
challenging problem[23].

In this paper we introduce a technique that makes use of prior
knowledge of acoustic behavior to improve the quality of the RIR
estimates. Our maximum a posteriori (MAP) estimate incorporates
a simple model for ambient noise and an exponential decaying model
for reverberation. Yet, results are quite appealing: an average 12dB
improvement over traditional RIR estimation.

A closely related problem is that of adaptive RIR estimation
(typically referred as adaptive AEC). In adaptive AEC, one assumes
the RIR is changing. That is much more challenging problem, and
one has to balance the adaptation parameter according to the dy-
namics of the system, as well as the ambient noise. State of the art
adaptive AEC use models of the RIR to control step size and related
parameters [24, 25, 26, 27, 28]. While they greatly improve adap-
tation, for a fixed system (as in our problem), they underperform
a simple matched filter (cross correlation), which (as us) uses the
whole available signal at once. In a way, our paper brings the RIR
estimation in line with the last 50 years of progress in adaptive AEC.

The remainder of this paper is organized as follows: Section 2
introduces our notation and explains the traditional RIR estimation
method. Section 3 presents our MAP formulation, and Section 4
presents and discusses the experimental results. Finally, Section 5
presents our main conclusions and future directions.

2. TRADITIONAL RIR ESTIMATION

To estimate the room impulse response (RIR) between a loudspeaker
and a microphone, a signal is played through the loudspeaker and
recorded at the microphone. Without loss of generality, let us as-
sume the first K samples of an RIR are a reasonable approximation
of the RIR for the intended application. Let us denote the training
signal as the N × 1 vector x, and the corresponding signal received
at the microphone as y. To simplify notation (and without loss of
generality), we assume x has unit variance. Neglecting boundary
effects to simplify the notation, we model the signal y as:

y = Xh + a (1)

where h is the K × 1 vector corresponding to the room impulse re-
sponse, X is theN×K matrix composed ofK time-shifted versions
and x, and a is the ambient noise, which we assume to be indepen-
dent from x.

speaker and a microphone, and both are under the control of the system. In
other scenarios, loudspeakers and/or microphones may have to be placed at
one of both the desired end points.
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The traditional way of estimating the RIR is by playing a white
training sequence x, and correlating it with the received signal y
[29]. More specifically, by computing:

ĥ = XTy. (2)

The reasoning for this approximation can be observed by inserting
the expression for y from (1) into (2), i.e.:

ĥ = XT (Xh + a) (3)

= (XTX)h + XTa. (4)

By taking the expected value of (4), we get:

E{ĥ} = Rxxh + rxa (5)

where Rxx = E{XTX} (i.e., the K-lag autocorrelation matrix of
x), and rxa = E{XTa} (i.e., the K-lag cross-correlation vector
between x and a). Note that, if the training sequence is white, than
Rxx = I, and, since the noise is assumed independent of the signal
rxa = 0. Thus, XTy is an unbiased estimate of the RIR h. Further-
more, as the length of the training sequence increases, the estimate
becomes increasingly close to the true h, converging to the correct
value as N →∞.

For finite training sequences, however, these are just approxima-
tions. Indeed, we can rewrite (4) as:

ĥ = h +
(
XTX− I

)
h + XTa (6)

Thus, we see that there are two noise terms affecting the traditional
way of estimating ĥ, both related to the fact that x is finite. The first
one reflects the non-diagonal nature of a finite signal covariance ma-
trix, while the second term originate from the random correlations
between two (independent) finite signals. The first can be alleviated
by making the training sequence longer, and the second can be al-
leviated by making the loudspeaker signal stronger, or the sequence
longer.

Note that the non-diagonal elements of the covariance matrix
can also be reduced by using a special kind of white noise, called
maximum length sequences (MLS) [30, 31, 32]. These special
pseudo-random sequences, do improve the quality of the estimates.
However, they sound like white noise, and cannot be modified
much. As such, they are not appropriate for most applications where
users will be present during the measurements (including our target
application of initial AEC filter estimation).

Figure 1 shows the ĥ estimation error as a function of training
sequence duration, for ambient noise levels of 0 dB and 40 dB SNR
(plotted as 10 log10(

∑
i(ĥ[i]− h[i])2/

∑
i(h[i])2)). The quality of

estimates vary widely with room characteristics, distance, etc. The
data in Figure 1 was obtained using the parameters that are clos-
est to our target application in AEC, and are described in more de-
tail in Section 4. As expected, the quality of the estimate increases
by roughly 3dB for every doubling of the training sequence length.
However, to get to reasonable estimates, reasonably long sequences
have to be used. For example, at 40dB SNR level, a sequence with
262k samples, yields only a 23dB approximation of the true RIR. In
other words, we need 16 seconds of a training sequence to get a just
reasonable 23 dB approximation.

In many cases, however, we cannot afford too long sequences.
While for acoustic analysis of a concert halls, it might be reasonable
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Fig. 1. Mismatch between true and conventional RIR estimation as a
functions of training sequence length. Results correspond to a room
with T60 = 300ms, a microphone at 2.2m from the loudspeaker,
and Fs = 16KHz. Estimated filter is also 300ms long.

to play several minute-long training sequences, this is certainly not
the case when the RIR is being used as initialization for a acoustic
echo cancellation in a communication system.

3. MAP ESTIMATION

We now propose a maximum a posteriori (MAP) formulation to es-
timate h. Under the MAP formulation, we have:

hMAP = arg max
h

{f(h|y)} (7)

= arg max
h

{f(h)f(y|h)/f(y)} (8)

= arg max
h

{f(h)f(y|h)} (9)

where f(·) denotes the probability density function. Note that the
probability f(y|h) can be computed by estimating the the probabil-
ity of the noise a being y −Xh.

We assume that the ambient noise a, and the RIR h are multi-
variate Gaussian random variables, i.e., a ∼ N (0,Σa), and h ∼
N (0,Σh), where Σa and Σh are the covariance matrices for a and
h, respectively. Note that, while a Gaussian is probably not the best
model for h, it does capture its key statistical characteristics, and it
makes the mathematical treatment much simpler than if we assume
a more complex model. Thus, based on the Gaussian assumption,
we have:

f(h) =
1√

(2π)k det(Σh)
exp

(
−1

2
hT Σ−1

h h

)
, (10)

and

f(y|h)=
1√

(2π)k det(Σa)
exp

(
−1

2
(y−Xh)T Σ−1

a (y−Xh)

)
.

(11)
Inserting (10) and (11) in (9), taking the log, and disregarding

the constants and the log itself (since we only care about the h at the
maximum, but not the maximum value per se), we get:
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hMAP = arg max
h

{
−hT Σ−1

h h− (y−Xh)T Σ−1
a (y−Xh)

}
(12)

Taking the derivative of the function being maximized in the right
side of (12) and making it equal to zero, we get:

Σ−1
h hMAP −XT Σ−1

a (y −XhMAP ) = 0 (13)

Which can be rewritten as:

hMAP =
(
XT Σ−1

a X + Σ−1
h

)−1

XT Σ−1
a y (14)

Thus, to estimate hMAP , besides the received signal y, we need
estimates of the covariance matrices of the ambient noise and of the
taps of the RIR. These are, in effect, our priors on the the ambient
noise, and on the RIR itself. We discuss our method for obtaining
them next.

3.1. Estimating the priors Σa and Σh

The covariance matrix Σa captures the characteristics of the ambient
noise. Assuming such noise is stationary, a reasonable estimate can
be easily computed during silence periods, e.g., before playing the
training sequence x. Thus, in effect it is truly a priori knowledge.

As a proof of concept, and a demonstration of the potential of
the technique, we have chosen to use a reasonably simple model for
Σh. We already simplified the model by assuming the taps of h

are jointly Gaussian. While the result in (14) would be valid for a
generic Σh, we further simplify our method by assuming the taps
are independent, and that they decay at an exponential rate with a
time constant proportional to the room reverberation time T60. The
independence assumption makes Σh a diagonal matrix. Then, each
element of the diagonal corresponds to the estimate of the variance
of that tap [33, 34]:

σ2
h[k] = A.10−6k/FsT60 , (15)

where A is a scaling constant to account for the starting sound level.
Note that this simplified model disregards the fact that the direct path
does not obey the same exponential decay as the rest of the reverber-
ation, and the sparseness of early reverberation. The constantsA and
T60 are estimated by computing the cross correlation between x and
y (i.e., the RIR using the traditional method), and fitting a function
in the form of (15) to the later part of the correlation (to avoid the
direct path and early reflections). More specifically, we compute ĥ

using Eq. (2), and estimate A and T60 as:

{A, T60} = arg min
A,T60

K∑
k=ks

(
(ĥ[k])2 −A.10−6k/FsT60

)2
, (16)

where ks is the starting point, chosen to help ignore the direct path
and the early reflections.

Our estimation of the covariance matrix of the taps of the RIR,
Σh, is based on the actual received signal y. Thus, rigorously speak-
ing, it is not prior knowledge. The prior is effectively the exponen-
tial decay assumption. In other words, there are two estimation steps.
In the first, we use the received signal to estimate Σh. Then, on a
second step, we estimate hMAP using our estimate of Σh as prior.

Because the first step is simply an estimation of two real numbers
(A and T60), we assume it is reasonably robust, and don’t consider
this as a significant source of error, and focus mostly on the second
step. Although subtle, we make that distinction to clarify our use of
the “MAP” term in naming our estimation algorithm.

4. EXPERIMENTAL RESULTS

As we mentioned earlier, obtaining true RIRs is challenging, so the
standard way of evaluating RIR estimation methods is based on syn-
thetic data. We compare the results of our MAP method with the
“traditional” correlation method, both using a random training se-
quence as well as a maximum length sequence. We denote these by
TRAD and MLS, respectively, while refer to our method as MAP.

For synthetic data, we can directly compare the estimated RIR
with the “actual” one, and precisely measure the estimation error.
Table 1 shows the results for ambient SNRs varying from 0 to 30dB,
and sequences lengths of 4095, 8191, and 16383. Note that MLS
sequences are restricted to certain lengths (e.g., 2N − 1), so we
evaluate results only at those lengths, even though the MAP and
TRAD methods do not have such restriction. The simulated room
is a rectangular box measuring 2.9 × 3.7 × 5.4 meters, with a T60

of 300ms, and a microphone at 2.2 m from the loudspeaker. Sam-
pling frequency is 16KHz, and the estimated filter length is 300ms
(thus K = 4800). The “true” RIR h was obtained using the im-
age method [35]. For TRAD and MAP, a different training sequence
is generated each trial, as a pseudo-random gaussian noise with the
desired length. For the MLS the training sequence is computed as
in [31]. For all cases, the received signal y was then computed by
Eq. (4), and used as input for the estimation method. Results are
averaged over 100 trials with different environment (white) noise.

For the MAP method, we compute A and T60 by using (16)
with ks = 800 and K = 4800, and use a quadratic error parametric
fitting based on the minsearch function from Matlab 2013Ra.

As it can be seen in Table 1, the MAP estimation is better than
TRAD and MLS in all cases. The gains over TRAD vary from 5.5
to 19.4 dB, with an average improvement of 11.8 dB. Compared to
MLS, the gains are smaller, varying from 1.3 to 6.8 dB, with an
average improvement of 2.8 dB.

Figure 2 shows an example of the true and estimated RIRs by the
different methods. As expected, the TRAD method is much noisier,
and that estimation noise does not decrease towards the tail of the
RIR. The estimation based on MLS has significantly less noise than
TRAD. However, although hard to see in the picture, that noise does
not decrease significantly towards the tail either. Finally, the MAP
estimation is clearly closer to the ground truth, and the estimation
noise is decreasing with k. This is important, particularly in cases
where the length of the true impulse response is not known a priori.

4.1. RIR estimates and AEC

While this paper focuses mostly on the RIR estimation itself, in this
section we quickly comment on our underlying application, as it has
some implications on our method. AEC is typically done by adap-
tive systems. This is partially due to the need to adapt to environ-
ment changes, and partially due to the need for a reasonable start
up time. In systems where the direct path between loudspeaker and
microphone is known a priori (e.g., speakerphones, etc) that path is
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Length = 4095 Length = 8191 Length = 16383
SNR TRAD MLS MAP TRAD MLS MAP TRAD MLS MAP

0 1.61 5.52 9.08 4.80 8.68 11.19 7.91 11.41 13.41
10 3.68 11.66 14.34 7.05 16.90 18.19 10.60 19.61 21.47
20 4.07 13.26 15.49 7.52 20.50 22.78 10.75 23.14 28.08
30 4.12 13.47 15.78 7.68 21.12 23.26 11.16 23.75 30.55

Table 1. Estimation mismatch, in dB, between the true RIR and the corresponding estimates using traditional correlation (TRAD), using
correlation based on a MLS, and using the proposed method (MAP).

0 1000 2000 3000 4000

TRUE

TRAD

MLS

MAP

Fig. 2. RIR and corresponding estimations for a room with T60 = 300ms, and 20dB SNR. From bottom to top: RIR ground truth, traditional
RIR estimate, MLS RIR estimate, and MAP RIR estimate.

typically measured in the factory (or during design), and used as the
starting point for the adaptive filter. In systems where the location
of loudspeaker is not controlled (e.g., PCs, game consoles, etc), this
initial estimate has to be computed after deployment. Indeed, mod-
ern communication systems where the placement of the microphone
in relation to the loudspeaker is not constrained, typically play a cal-
ibration tone to obtain an initial estimate of the AEC filter. Such
calibration tone may be disguised (e.g., the sinusoidal sweep at the
“startup” sound in Skype), or not (e.g., the Mozart snippet played
during the initial Kinect calibration). Regardless of being disguised
or not, “white noise” is not a desirable sound to be played at loud
volumes. For that reason, as much as MLS provide improvements
over pseudo-random sequences, they are very specific and cannot be
modified. While the results reported for TRAD and MAP are also
based on white noise sequences, these can be easily modified to ac-
commodate virtually any sequence, by whitening the received (and
reference) signals before computing the RIR estimates. While some
degradation can be expected, the overall trend is similar. In other
words, while we include results for using MLS in Table 1, we do not
consider them as a valid alternative to many applications. Further-
more, we point out that, for cases where MLS are valid, the MAP re-
sults can be further improved by using them as the training sequence
as well.

5. CONCLUSIONS

Estimating Room impulse responses find application in a number of
areas. Estimation time, however, is a concern, as it can be too long
for many applications. This time can be reduced by the use of MLS
sequences, but these imply additional constraints on the sequences.
In this paper we presented a new method for estimation of room
impulse responses. The method is based on a MAP formulation,
using the observed ambient noise and an exponential reverberation
decay as priors. While priors have been used in the past in adap-
tive AEC, they are used to control the adaptation, and do not extend
naturally to fixed (or initial) RIR estimation. Using our method, im-
provements of 11.8 dB over traditional methods, and of 2.8 dB over
MLS sequences were achieved. In contrast to MLS, the proposed
technique can be easily modified to support non-white training se-
quences, making it particularly appropriate for applications where
users will be present, as for example in initial AEC filter estimation.

We are currently using this MAP estimation to speed up product
development[36]. Additionally, we are also investigating extensions
to multichannel adaptive AEC[7], implications to microphone arrays
[37]and evaluating subjective quality of the results using Crowd-
MOS [38, 39]
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