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ABSTRACT

Analyzing the auditory scene of real environments is challeng-
ing partly because an unknown number and type of sound sources
are observed at the same time and partly because these sounds are
observed on a significantly different sound pressure level at the mi-
crophone. These are difficult problems even with state-of-the-art
sound source localization and separation methods. In this paper, we
exploit two such methods using a microphone array: (1) Bayesian
nonparametric microphone array processing (BNP-MAP), which is
capable of separating and localizing sound sources when the num-
ber of sound sources is unspecified, and (2) robot audition soft-
ware “HARK” is capable of separating and localizing in real time.
Through experimentation, we found that BNP-MAP is more robust
against differences in the sound pressure levels of the source signals
and in the spatial closeness of source positions. Experiments analyz-
ing real scenes of human conversations recorded in a big exhibition
hall and bird calling recorded at a natural park demonstrate the effi-
cacy and applicability of BNP-MAP.

Index Terms— Auditory scene analysis, Bayesian nonparamet-
rics, simultaneous sound source localization and separation, sounds
of different volume, unknown time-varying number of sources

1. INTRODUCTION

Computational auditory scene analysis (CASA) [1, 2] in real-world
environments is crucial for analyzing and understanding scenes by
sounds, performing surveillance, maintaining security, and mon-
itoring environmental changes such as human and animal behav-
iors [3–7]. For these tasks, sound source localization (SSL) and
sound source separation (SSS) are critical functions of CASA sys-
tems. The four main challenges with real-world environments are
(1) unknown number and type of sound sources, (2) interference by
reverberation, reflection, and noise, and (3) significant difference in
sound pressure levels of sound sources, (4) real-time processing for
certain applications.

To address these challenges, many microphone array-based
methods have been developed [8–12]. For example, a robot audition
software called “HARK” [13] is capable of localizing and separating
sound sources in real time to overcome challenge (4). This efficient
method is designed as a cascade approach: HARK first carries out
SSL using a multiple signal classification (MUSIC) method [14, 15]
and then SSS is executed on the basis of the localized results using an
algorithm to estimate the separation matrix [16, 17]. While effective
with regard to computation time, HARK sometimes requires manual
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parameter tuning to optimize the performance depending on the
acoustic environment, which is problematic in terms of challenges
(1) and (2).

In order to overcome challenge (1), Bayesian nonparametric mi-
crophone array processing (BNP-MAP) has been developed [18].
BNP-MAP enjoys a robust SSS performance in various indoor en-
vironments even if the number of sound sources is unknown which
satisfies challenges (1) and (2). The drawback of BNP-MAP is its
lengthy computation time, which fails to satisfy the fourth challenge.

In this work, we extensively investigate the third challenge: the
impact of the difference of the sound pressure level of constituent
source signals on an SSS task through a comparison of HARK and
BNP-MAP. In addition to an ordinary speech separation benchmark
using a mixture of speech signals played over loudspeakers, our ex-
perimental materials pose challenges (1–3) by using recordings col-
lected from an actual exhibition site and recordings of bird songs in
a natural park. The former were captured by a 32-channel micro-
phone array embedded on a robot called “Peacock” and the latter
by a 7-channel microphone array called “Microcone” manufactured
by Dev-Audio. We found through experimentation that BNP-MAP
outperforms HARK in terms of separation quality.

2. BACKGROUND AND RELATED WORK

Machine listening systems or robot audition usually hear a mixture
of sounds. Robot audition open software “HARK” [13] provides
various of signal processing algorithms to solve three fundamental
problems of CASA: sound source localization, sound source sepa-
ration, and recognition of separated sounds.

HARK provides an adaptive beamforming algorithm called mul-
tiple signal classification (MUSIC) that robustly localizes multiple
sound sources in real environments [14, 15]. It requires steering
vectors, which are transfer functions between a sound source and
each microphone, to exploit the advantages of the sub-space method.
HARK provides the MUSIC localization algorithm via these vectors.
It also provides pre-measured steering vectors for the Dev-Audio
Microcone (7-channel).

Consider to the separation of M sound sources with N micro-
phones, where N ≥M . The spectrum vector of M sources at time
t and frequency f and the mixing matrix are denoted as stf and Af ,
respectively. The observed signals captured by the M microphones
at time t and frequency f are denoted as xtf , which is then calcu-
lated as xtf = Afstf . Sound source separation aims to find the
separation matrix, Wf , that satisfies the equation ytf = Wfxtf

under a condition requires the output signal ytf to be the same as
stf for any t, possibly with a permutation in the order of the ele-
ments.
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Blind source separation (BSS) solves this problem by obtaining
an optimal separation matrix Wopt

f without using any prior infor-
mation such as Af . Wopt

f is estimated by minimizing a cost func-
tion J(y1:T,f ) that denotes the mixture degree of the output yt,f for
1 ≤ t ≤ T . To obtain Wopt

f , we use a gradient method to minimize
J(y1:T,f ) by using Wj+1

f = Wj
f −µJ ′(Wj

f ), where J ′(Wj
f ) de-

fines the derivative of the objective function with regard to Wf and
µ is the stepsize parameter. HARK provides adaptive stepsize con-
trol (GHDSS-AS) [16] to attain low-computational cost and improve
the sound source separation performance.

3. BAYESIAN NONPARAMETRIC SOUND SOURCE
SEPARATION AND LOCALIZATION

The BNP-MAP method can cope with sound source separation and
localization even if the number of sound sources is uncertain [18]. In
order to consistently cope with an arbitrary number of sound sources
regardless of the number of microphones, BNP-MAP uses a time-
frequency (TF) masking approach [19–21]. The key question here
is how many TF masks should be used when the number of sound
sources is unknown. The Bayesian nonparametric model circum-
vents this problem by allowing in theory for an infinite number of
TF masks.

3.1. Model

In this section, we outline the observation model and the major latent
parameters used for the separation and localization. Let xtf be the
observed M -channel mixture signal, an M -dimensional complex-
valued vector in the TF domain with t and f being the time and
frequency index, respectively. Each element of xtf corresponds to
the signal observed by each microphone. In this method, in addition
to the multichannel observation, the steering vectors of the micro-
phone array are used for the localization. The localization is carried
out in a discrete manner: for example, in our implementation, we
prepare steering vectors with a 5◦ resolution on the azimuth plane,
which results in 72 distinct directions.

This TF masking-based model assumes that at most one sound
source signal is dominant at time t and frequency f (TF point). Soft
TF masks corresponding to respective sound sources are generated
to extract the sound sources by calculating the probability of which
sound source each TF point belongs to. At the same time, each TF
mask is assigned to a certain direction for the localization. This
model involves two types of latent variables, ztf and wk, for the
separation and localization, respectively. By ztf = k, we mean that
sound source k is dominant at TF point xtf , whereas wk = d means
that sound source k arrives from direction d, where k and d denote
source index and discrete direction index, respectively.

The design of the likelihood model of the multichannel obser-
vation is based on the covariance model [22], where the observation
vector follows a Gaussian distribution with zero mean and a time-
varying covariance matrix. The covariance matrix factorizes into
two parts: the time-varying scale corresponding to the power of the
dominant source signal and the matrix corresponding to the propa-
gation of the sound source from a certain direction. The likelihood
is given as:

xtf |ztf , wk ∼ NC(0, λtfHf wztf
), (1)

where NC(µ,Λ) is the complex Gaussian distribution with mean µ
and precision matrix Λ1. Note that the subscript wztf is the direc-
tion index: wztf = d if ztf = k and wk = d. Scalar λtf represents

1A precision matrix is the inverse of a covariance matrix. We opted for

the time-varying scale of the source signal and Hfd represents the
propagation matrix corresponding to direction d. To simplify the in-
ference, the scale parameter is fixed as λtf = 1

xH
tf

xtf
, where ·H

denotes Hermitian transpose. We use the complex Wishart distribu-
tion as a prior of Hfd as

Hfd|νfd,Gfd ∼ WC(νfd,Gfd), (2)

where hyperparameters νfd and Gfd are the degree of freedom and
the scale matrix, respectively. The degree of freedom is set as νfd =
M . Scale matrix Gfd is constructed from the M -dimensional steer-
ing vector qfd as G−1

fd = qfdq
H
fd + εIM with ε = 0.01. This

means that the steering vector corresponding to direction d is used
as the prior information to form the propagation matrix of the direc-
tion.

Next, we present the prior for the discrete latent parameters ztf
and wk. The hierarchical Dirichlet process (HDP) [23] is used as
the prior of ztf so as to deal with an infinite number of TF masks.
That is, HDP allows ztf to take 1, . . . ,∞. The localization vari-
able wk follows a finite categorical distribution with the range wk =
1, . . . , D, where D is the number of directions given as the steering
vectors. The formal expression is given as
β|γ ∼ GEM(γ), πt|α,β ∼ DP(α,β), ztf |πt ∼ πt, (3)

φ|κ ∼ D
( κ

D
1D

)
, wk|φ ∼ φ, (4)

where GEM(γ) is the Griffiths-Engen-McCloskey distribution
with concentration γ and DP(α,β) denotes the Dirichlet pro-
cess (DP) with a concentration α and a base measure β. 1D is
a D-dimensional vector with all elements being 1 and D(α) is
a Dirichlet distribution with parameter α. Localization variable
wk is chosen in accordance with the D-dimensional probability
vector φ whose elements add up to one. Separation variable ztf
is the infinite-dimensional extension: for each time frame t, an
infinite-dimensional probability vector πt is generated from the DP
with base measure β, where this base measure is again an infinite-
dimensional probability vector. This hierarchical structure is used
to create a temporal synchronization of the emergence of a certain
source across all frequency bins.

3.2. Parameter inference and source extraction

Given the observation xtf , we compute the posterior probability of
the latent parameters ztf and wk. We use a Markov chain Monte
Carlo method to generate samples from the posterior distribution of
these latent variables. Specifically, we use a Gibbs sampling method
with the propagation matrix Hfd being marginalized out.

The Gibbs sampler has been extensively described in [18], so
here we briefly explain how the sound sources are extracted from
the observed mixture xtf . Let {z(i)tf , w

(i)
k }Ii=1 be a set of samples

generated from the Gibbs sampler, where I and i are the number
of samples and the index of the Markov chain, respectively. Note
that the instantiated source index is upper-bounded by K such that
1 ≤ z

(i)
tf ≤ K because we have a finite amount of data (finite time

frames and frequency bins). Using this samples, the source signal
coming from direction d is estimated as

ŝdtf =
1

I

I∑
i=1

δ(wztf , d)xtf , (5)

where δ(i, j) = 1 if i = j and 0 otherwise.

the precision-based notation so that we could use the Wishart distribution for
the prior of the precision matrix.
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a) Room for benchmarks b) Configuration of two sound sources
Fig. 1. Experiment room and configuration of two sound sources.

Table 1. SDR of sounds separated by BNP-MAP and GHDSS-
AS. Rows and columns indicate direction of sound sources θ and
SNR to another source p, respectively. Separation performance is
significantly degraded when the direction or SNR is low (bold area).

a) BNP-MAP
SNR p Direction θ [deg]

[dB] 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
10 3.7 6.5 6.2 6.4 6.2 6.0 6.1 6.0 6.8 6.7 7.3 7.9 6.8 6.5 8.0 7.2 7.3 7.3
8 3.4 6.4 6.1 6.4 6.0 5.7 6.1 6.0 6.5 6.6 7.2 7.6 6.5 6.4 7.7 7.0 7.2 6.6
6 3.5 6.0 5.4 5.8 5.9 5.4 5.7 5.5 6.2 6.5 6.9 7.3 6.2 5.9 7.2 7.0 6.8 7.2
4 3.2 5.6 5.1 5.5 5.9 5.4 4.9 5.4 5.4 6.1 6.4 6.9 6.0 6.1 6.7 7.1 6.2 6.7
2 3.7 5.0 5.0 5.7 5.8 5.1 5.2 5.2 5.4 5.3 6.0 6.5 5.7 5.6 6.3 6.7 5.7 6.0
0 3.8 4.5 4.9 5.3 5.4 4.9 4.6 4.8 4.8 4.8 5.7 5.4 5.6 5.3 5.7 6.1 6.0 6.0
-2 3.2 3.9 5.1 4.9 5.2 4.6 3.9 4.8 4.7 4.2 5.5 4.2 5.1 4.8 5.2 5.9 5.1 5.6
-4 2.3 3.1 4.5 5.1 4.7 4.0 3.5 3.9 3.9 3.6 5.2 3.9 4.1 3.8 4.7 5.2 4.7 5.0
-6 1.6 2.7 4.2 4.4 4.7 4.0 2.5 3.9 3.0 2.8 4.5 3.4 3.7 3.6 3.3 4.6 3.6 3.8
-8 0.2 1.6 3.6 3.7 4.0 3.1 1.3 3.6 1.8 2.4 3.8 2.8 2.3 2.8 2.2 4.0 2.5 3.6
-10 -1.8 0.9 3.0 2.9 3.4 2.2 1.3 2.6 1.8 1.5 2.4 1.5 1.6 1.8 1.7 3.7 2.0 3.2

b) GHDSS-AS
SNR p Direction θ [deg]

[dB] 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
10 -1.3 -1.1 0.8 3.0 3.2 4.0 -0.6 2.4 3.5 5.4 7.0 5.8 6.7 5.8 6.7 6.5 6.2 6.8
8 -2.1 -2.2 -0.0 2.4 2.9 3.6 -0.4 1.8 3.6 5.1 6.5 5.1 6.6 5.7 6.5 6.0 5.8 6.5
6 -3.1 -2.6 -0.9 1.7 2.4 2.9 -0.6 1.4 3.3 4.6 6.4 4.4 6.3 5.4 6.1 5.5 5.3 5.9
4 -4.1 -3.4 -1.4 0.8 1.6 2.3 -0.7 1.2 2.8 4.0 5.7 3.5 5.5 4.2 5.2 4.7 4.8 5.1
2 -5.5 -4.8 -2.9 -0.0 0.6 1.4 -1.2 0.6 2.2 3.0 4.7 2.4 4.8 3.1 4.1 3.8 3.7 4.1
0 -6.9 -6.3 -3.5 -1.2 -0.6 0.3 -1.7 -0.6 1.3 2.0 3.6 1.3 3.7 1.6 3.1 2.1 2.3 2.9
-2 -8.5 -7.6 -4.6 -2.4 -1.9 -1.0 -2.3 -2.0 0.2 0.5 2.5 -0.1 2.6 -0.1 1.9 0.2 0.9 1.8
-4 -10.1 -9.8 -6.1 -3.6 -3.0 -2.4 -3.5 -2.8 -1.4 -0.9 0.8 -1.4 1.2 -1.3 0.2 -1.6 -0.6 0.3
-6 -11.6 -10.7 -7.3 -5.1 -4.7 -4.1 -4.8 -4.1 -3.2 -2.1 -0.4 -2.5 -0.3 -3.2 -1.0 -3.1 -2.5 -1.2
-8 -13.3 -12.2 -9.0 -6.5 -6.2 -5.3 -5.4 -5.1 -4.5 -3.4 -2.2 -3.9 -1.9 -4.8 -2.7 -4.5 -4.3 -3.2
-10 -14.8 -13.8 -10.6 -8.3 -7.6 -7.0 -6.7 -6.6 -6.0 -4.8 -4.2 -5.2 -3.6 -5.6 -4.5 -6.6 -5.8 -4.9

4. EXPERIMENTS

In this section, we present the experimental results that consist of
the comparison between BNP-MAP and HARK, and the separation
results of practical auditory scenes with BNP-MAP.

4.1. Evaluation with simulated sound

To deal with the third challenge, we evaluated the robustness of
BNP-MAP and HARK from the perspectives of signal-to-noise ra-
tio (SNR) and the spatial sparseness. The quality of sounds sep-
arated by BNP-MAP and HARK was measured in our experiment
room and the results evaluated in terms of the signal-to-distortion ra-
tio (SDR). The SDR measures the overall retrieval quality of sound
sources from their mixture [24].

Evaluation settings The evaluation was conducted in our ex-
periment room with the set-up shown in Fig. 1-(a). The reverber-
ation time (RT60) of the experiment room was 800 ms. To capture
impulse responses, we used a 7-channel microphone array (Micro-
cone, Dev-Audio Inc.) that captures multichannel sound signals at
16 kHz sampling. The input mixed sound was generated by con-
volving the target sounds with the impulse responses. The impulse
responses were measured using a time-stretched pulse [25] with a
length of 16,384 samples.

As shown in Fig. 1-(b), we assumed one microphone array and
two sound sources located 2 m away from the microphone array. The
sound sources were placed at +θ deg and −θ deg, respectively and
mixed with the volume difference (SNR) of p dB. We changed the

a) ET2013 Exhibition hall b) Peacock (AIST)
Fig. 2. Exhibition hall and Peacock mobile robot.

Fig. 3. Map generated by SLAM with LiDAR. Peacock was placed
in the orange circle during recording.

direction θ from 5 deg to 90 deg with a 5 -deg resolution. We also
changed the SNR p from −10 dB to 10 dB with a 2 -dB resolution.

The two target sound sources were chosen from six human
voices (three male, three female) in JNAS [26] phonetically bal-
anced Japanese utterances. That is, 30 convolutive mixtures were
generated from JNAS for each direction and SNR. Under all condi-
tions, the clustering parameter K of BNP-MAP was set to 12. The
localization and separation of HARK were conducted with MU-
SIC [15] and GHDSS-AS [16], respectively. The number of sound
sources M , a parameter for MUSIC in HARK, was set to 3. These
parameters were selected experimentally.

Evaluation results Table 1 lists the mean SDR of separated
sound sources for each direction and SNR. The SDRs of GHDSS-AS
were significantly degraded when the direction θ was under 15 deg
or the SNR p was under −6 dB. In contrast, BNP-MAP maintained
the SDRs when the direction θ was over 5 deg and the SNR p was
over −10 dB. BNP-MAP was more robust against spatial sparseness
and SNR than GHDSS-AS in terms of SDR.

4.2. Analysis of an actual recording

We recorded audio signals at Embedded Technology exhibition2

(ET2013) held in convention center PACIFICO Yokohama, Japan in
2013. The recorded sound was analyzed by BNP-MAP to demon-
strates its performance from the viewpoint of the challenges (1–3).
In particular, a crowd of people talking with each other makes the
number of sound sources extremely uncertain.

Analysis settings The recording was conducted with a mobile
robot called Peacock in a big exhibition hall (Fig. 2). Peacock fea-
tures a 32-channel microphone array on its top and a light detection
and ranging (LiDAR) sensor under the array. A map of the hall gen-
erated by SLAM with the LiDAR is given in Fig. 3. Peacock was
placed in the orange circle during the recording. We captured 32-
ch sound signals at 16-kHz sampling and then analyzed 10 minutes

2http://www.jasa.or.jp/et/ET2013/english/

725



0 2 4 6 8 10
# Sources

0
2

4

6

8

10
Oc

cu
rr

en
ce

s 
[ti

m
es

] 4-ch

0 2 4 6 8 10
# Sources

0
2

4

6

8

10 8-ch

0 2 4 6 8 10
# Sources

0
2

4

6

8

10 16-ch

0 2 4 6 8 10
# Sources

0
2

4

6

8

10 32-ch

Fig. 4. Histograms of the number of separated sound sources when
input mixture signal was 4-, 8-, 16-, and32-ch.

Fig. 5. Point clouds (black marks) obtained from LiDAR and the
directions of separated sounds.

of the sound data by BNP-MAP. To reduce the computational cost
of BNP-MAP, the 10-minute recording was divided into 30-second
segments, each of which were individually analyzed.

Analysis results In this analysis, only 8 of the 32 microphones
on the robot were used. Figure 4 provides histograms of the number
of separated sound sources when the input signal was 4-, 8-, 16-, and
32-ch. As shown, BNP-MAP separated fewer sound sources as more
microphones were used for the analysis. This is because, when the
number of input channels of the input signal increases, the classifica-
tion problem of sound sources is solved in high-dimensional space.
Note that we reduced the number of microphones so that the residual
microphones could form a circle.

BNP-MAP separated the captured sound signals into various
signals comprising talking voices, broadcasts, and background
noises. Figure 5 shows the point clouds obtained from the LiDAR
and the directions of the separated sounds in one the 30-second
segments. Clusters and lines formed from the black points denote
humans and walls, respectively. The input signal was separated into
three sound sources: Src. 0, background noise, Src. 1., a female
voice broadcast, and Src. 2, nearby talking male voices. The clusters
at 90◦, 1.7 m might belong to speakers from Src. 2. The BNP-MAP
did not separate moving sounds such as conversation from walking
people because it assumes that the sound sources are stable.

Figure 6 shows the spectrograms of the sounds separated by
BNP-MAP and GHDSS-AS from the same segment as Fig. 5.
GHDSS-AS separated the captured signal into two sounds (the
same sound sources as Src. 1 and 2 of BNP-MAP) in this period.
While the signals separated by BNP-MAP contained very little noise
and had clear harmonic structures, those of GHDSS-AS contained
more noise and had obscure harmonic structures. The BNP-MAP
separation is clearly superior to that of GHDSS-AS in this case.

4.3. Analysis of a bird chorus

We also analyzed the recorded signals of bird choruses with BNP-
MAP posing the first challenge. The bird choruses were captured
in natural park Higashi-mikawa Furusato Park, Japan in 2013 with
the 7-channel Microcone microphone array. The 7-ch mixture sound
signals were captured at 16 kHz sampling and then we analyzed one
minute of the sound data by BNP-MAP.

Figure 7 shows an example of the separated sounds. BNP-MAP

a) BNP-MAP b) GHDSS-AS
Fig. 6. Example of separation results of recording captured at
ET2013. Src. 0, 1, 2 are background noise, female voice broadcasts,
and nearby talking male voices, respectively.

Fig. 7. Example of sounds of bird choruses separated by BNP-MAP.
Src. 0, 1, 2, and 3 were choruses of a Zosterops japonicus, a Ficedula
narcissina, a raven, and a Hypsipetes amaurotis, respectively.

separated the captured signal into 12 sound sources from which we
selected sounds that contained bird songs (depicted in Fig. 7). Src. 0,
1, 2, and 3 refer to the choruses of a Zosterops japonicus, a Ficedula
narcissina, a raven, and a Hypsipetes amaurotis, respectively.

5. CONCLUSION

In this work, we investigated the use of HARK and BNP-MAP on
SSL and SSS in two real environments: an exhibition hall and a
natural park. While BNP-MAP demonstrated proficient separation
quality in the face of source number uncertainty, the analysis of real
acoustic scenes poses further challenges. These include the separa-
tion of multiple sound sources with a spatial overlap and extraction
of moving talkers around the microphone array.

Extraction of moving sound sources using Peacock mobile robot
should be improved by integration with audio/visual analysis. We
have already developed an audio/visual integrated frog chorus ana-
lyzer using BNP-MAP and the FireFly sound-imaging system [27]
and demonstrated its robustness and accuracy with in-field experi-
ments [28]. Similar to this system, we intend to integrate the results
of BNP-MAP and LiDAR for analyzing human behaviors.

Acknowledgment We are grateful to Prof. Reiji Suzuki of
Nagoya University for giving a recording of the bird-chorus.
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