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ABSTRACT
Model-based single-channel source separation (SCSS) is an ill-
posed problem requiring source-specific prior knowledge. In this
paper, we use representation learning and compare general stochastic
networks (GSNs), Gauss Bernoulli restricted Boltzmann machines
(GBRBMs), conditional Gauss Bernoulli restricted Boltzmann ma-
chines (CGBRBMs), and higher order contractive autoencoders
(HCAEs) for modeling the source-specific knowledge. In particular,
these models learn a mapping from speech mixture spectrogram
representations to single-source spectrogram representations, i.e. we
apply them as filter for the speech mixture. In the test case, the
individual source spectrograms of both models are inferred and the
softmask for re-synthesis of the time signals is determined thereof.
We evaluate the deep architectures on data of the 2nd CHiME speech
separation challenge and provide results for a speaker dependent, a
speaker independent, a matched noise condition and an unmatched
noise condition task. Our experiments show the best PESQ and
overall perceptual score on average for GSNs in all four tasks.

Index Terms— single channel source separation, deep neural
networks, general stochastic network, representation models

1. INTRODUCTION

Recently, deep learning became popular in signal processing and
speech technology outperforming many well-established approaches
[1, 2, 3]. Representation models, i.e. a subclass of deep models, are
able to learn a representation of the underlying data. Obtaining a rep-
resentation of the input data before fine-tuning on targets leads to a
better overall performance than pure discriminative training. There-
fore DBNs outperform MLPs in many cases [4].

In single-channel source separation (SCSS) a mixture of two
signals is separated into its underlying source signals. This is ill-
posed and difficult to solve. One of the first model-based approach
is the factorial-max vector quantization (VQ) [5], where the under-
lying assumption is that speech is sparse, i.e. each time frequency
bin belongs to one of the two assumed sources leading to the no-
tion of binary mask. In [6], Gaussian mixture models (GMMs) have
been introduced for SCSS. Another method for identifying compo-
nents with temporal structure in a time-frequency representation is
non-negative matrix factorization (NMF) [7, 8]. Recently, [9] ap-
proached the problem via structured prediction, i.e. the ideal bi-
nary mask (IBM) is directly estimated from a mixture spectrogram.
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We recently extended this in two ways [10]: (i) directly learning a
real valued mask, i.e. softmask, enabling a more precise estimate
of speech [11], and (ii) using several deep learning architectures
such as general stochastic networks (GSNs), multi-layer perceptrons
(MLPs), and deep belief networks (DBNs). In [12, 13], deep recur-
rent neural networks have been used for SCSS. All these approaches
usually require sufficient speaker/source specific data for learning
which restricts their applicability to scenarios with matching train-
ing/test conditions and known sources. We recently developed an
adaption technique based on GMMs to overcome any model mis-
match between training and testing conditions introduced by vari-
ations in the room acoustics or changed speaker position [14]. We
successfully adapted speaker independent (SI) source models trained
on clean utterances to a different acoustic channel and achieve al-
most the same performance level as speaker dependent (SD) models
trained on reverberated utterances.
From the literature we identify two main approaches to SCSS:

1. Direct learning of either the binary- or the soft-mask given a
signal mixture [9, 10].

2. Indirect learning of the binary- or soft-mask by predicting
the individual source representations separately with two
individual models. Typically both models are trained on
speaker/source specific data and during separation the com-
bination of both models fitting the observed mixture best is
determined to extract the mask for separation. Approaches
based on NMF or VQ typically belong to this class.

In this paper, we follow a different approach using representation
learning models. We learn separate models which map from speech
mixture to single-source spectrograms, i.e. the models filter the
speech mixture spectral representation. During separation, the in-
dividual source spectrograms are inferred by the models and the
softmask for re-synthesis of the time signals can be easily com-
puted. In particular, we use popular models from representation
learning including Gauss Bernoulli restricted Boltzmann machines
(GBRBMs) [15], conditional Gauss Bernoulli restricted Boltzmann
machines (CGBRBMs) [16], higher order contractive autoencoders
(HCAEs) [17], and generative stochastic networks (GSNs) [18, 19].
Furthermore, a rectifier MLP is tested to facilitate a comparison of
the results in this work to [10]. We show here that the potential
of representation models can not be fully exploited in approach (1)
(cf. [10]) and a directly inferred softmask from the learned repre-
sentation providing the mixed signal leads to inferior performance.
In experiments, signal mixtures of the 2nd CHiME speech separa-
tion challenge [20] are separated in four different setups: SD, SI, a
matched noise condition (MN) and an unmatched noise condition
(UN) task. The GSN outperforms on average MLPs, RBMs and
HCAEs in terms of the PESQ [21] score and the overall perceptual
score (OPS) from the PEASS toolbox [22] in all four scenarios.

The paper is organized as follows: In Section 2 we shortly
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discuss the used representation models. Section 3.1 describes our
experimental setup and evaluation criteria for SCSS. Section 3.2
presents experimental results and Section 4 concludes the paper.

2. REPRESENTATION MODELS

We evaluate three classes of representation models: The fist class are
restricted Boltzmann machines (RBMs) [23, 24, 25, 15, 26]. RBMs
are a particular form of log-linear Markov random fields, where the
energy function is linear in its free parameters. Learning in RBMs
corresponds to modifying this energy function to obtain desirable
properties. This can be accomplished via contrastive divergence
training, i.e. a kind of block Gibbs sampling applied to the RBM
Markov chain for k-steps. There are binary RBMs [27] or real-
valued GBRBMs [15] for learning representations of the underlying
data. They can be also used to capture temporal relations, i.e. Con-
ditional GBRBMs [16]. RBMs also form the basis of more complex
and powerful neural networks, i.e. deep belief networks [26] and
therefore they are widely used in many applications [28, 29].

The second class are (deep) autoencoders (AEs) [30, 31, 32, 17,
33, 34]. AEs map the input to a hidden representation and transfer
the latent representation back into a reconstruction. AEs are mainly
used as feature extractors [32], filters or data generators [34]. They
are able to learn a representation of the underlying data and can also
be stacked forming deep models. An interesting encoder variant,
also used in this work, is the higher order contractive autoencoder
(HCAE) [17], regularizing the norm of the Jacobian (analytically)
and Hessian (stochastically) to obtain a better data representation.

The third class of representational models are general stochastic
networks [18, 19]. GSNs are multi-layer network architectures with
backprop-able stochastic neurons. They are a further development
of AEs enabling joint training of all layers. GSNs use determin-
istic functions of random variables modeling a Markov chain with
additional dependencies between the hidden states. The Markov
chain can be defined as Ht+1 ∼ Pθ1(H|Ht+0, Xt+0), Xt+1 ∼
Pθ2(X|Ht+1). In particular, the density f̂ iθ models the hidden state
Hi
t+1 = f̂θi(Xt+0, Zt+0, Ht+0), specified for some independent

noise source Zt+0, with the condition that the input Xt+0 cannot be
recovered exactly fromHt+1. The function f̂ iθ = ηiout+g(ηiin+ âi)
is a backprop-able stochastic non-linearity for layer i, where Zit ⊇
{ηiin, ηiout} are noise processes and g(·) is a non-linear activation
function.
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Fig. 1: Unfolded multi-layer GSN with backprop-able stochastic
units [19].

The term âi = W iIit + bi defines the activations for layer i
with a weight matrix W i and bias bi, representing the parametric

distribution Pθ1 . In general, f̂ iθ(I
i
t) specifies an upward path in a

GSN, where the input Iit is either the realization xit of observed sam-
ple Xi

t or the hidden realization hit of Hi
t . In the case of Xi

t+1 =
f̌ iθ(Zt+0, Ht+1), f̌ iθ(H

i
t) = ηiout+g(ηiin+ ǎi) defines a downward

path in the network i.e. ǎi = (W i)THi
t + bi, using the transpose

of the weight matrix W i. This formulation allows to directly back-
propagate the reconstruction log-likelihood Pθ2(X|H) for all pa-
rameters θ ⊇ {W 0, ...,W d, b0, ..., bd} using multiple deterministic
functions of random variables fθ ∈ {f̂0

θ , ..., f̂
d
θ , f̌

0
θ , ...f̌

d
θ }, where

d is the number of hidden layers. Figure 1 visualizes an unfolded
multi-layer GSN described in detail in [19]. GSNs indirectly cap-
ture the data distribution as the stationary distribution of the Markov
chain, defined by a corruption/denoising process, under mild condi-
tions. GSNs can be either used as generative stochastic networks or
as hybrid generative-discriminative stochastic networks, i.e. general
stochastic networks [19]. Due to their hierarchical structure and a
new training algorithm, i.e. walkback training, they form a powerful
model class generating convincing results on image reconstruction
[18] as well as image classification [19].

3. SINGLE CHANNEL SOURCE SEPARATION USING
REPRESENTATION MODELS

3.1. Experimental Setup

We evaluate all models on a speaker dependent separation task (SD),
a speaker independent separation task (SI), a matched noise separa-
tion task (MN), and an unmatched noise separation task (UN) using
utterances of the 2nd CHiME speech separation challenge database
[20] and the NOISEX [22] corpus. In the SD and SI task original
CHiME samples were used as data source. CHiME consists of 34
speakers with 500 training samples each, and a validation- and test-
set with 600 samples. The speaker data is selected from the GRID
corpus [35]. Due to the lack of isolated noise signals needed to com-
pute the source-specific spectrograms of the validation- and test set
for evaluation purposes, disjoint subsets of the training corpus were
used for training and testing. In the MN and UN task, CHiME speech
signals were mixed with noise variants from the NOISEX corpus i.e.
for MN the same Ids {1,...,12} were chosen for both training and
testing. In the UN task, the Ids {1,...,12} and {13,...,17} were se-
lected for the training and testing, respectively. Details about the
task specific setup are listed in Table 1. In [10, 9], a similar setup
has been used.

task database speakers utterance/speaker
train valid test

SD CHiME 4 400 50 50
SI CHiME 10 50 5 5

MN CHiME, NOISEX 10 40 5 5
UN CHiME, NOISEX 10 40 5 5

Table 1: Number of utterances used for training, validation and test.

The time frequency representation was computed by a 1024
point Fourier transform using a Hamming window of 32ms length
and a steps size of 10ms. All SD experiments were carried out using
2 male and 2 female speakers using the Ids {1,2,18,20}. For the
remaining experiments we used 5 male and 5 female with the Ids
{3,5,6,9,10,4,7,8,11,15} for training and for testing 5 utterances of
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each speaker of the same speakers as in the SD experiment are used.
The training data was mixed at dB levels of {-6,-3,0,+3,+6,+9}.
In the test case each model was evaluated separately using the
whole test data remixed for every dB level. We trained two mod-
els predicting reverberated clean speech and noise given the mixed
utterance. Both predictions were used to compute the softmask i.e.
Y (t, f) = |S(t,f)|

|S(t,f)|+|N(t,f)| , where f and t are the time and fre-
quency bins and N(t, f) and S(t, f) are the interferer (noise) and
speech spectrogram bins recovered by the corresponding models,
respectively.

For objective evaluation the overall perceptual score (OPS) [22]
and the PESQ measure [21] are used. The OPS ranges between 0
and 100, where 100 is the best. Both, OPS and PESQ try to model
human listening behavior.

3.2. Results

A grid test on SD data using a GSN over M × d layers, where
M ∈ {256, 500, 1000, 2000, 3000} are the neurons per layer and
d ∈ {1, 2, 3} was performed to find the optimal network config-
uration. Sigmoid RBM- and HCAE variants were configured with
network size of 2000 × 1. The optimal GSN is a 2000 × 2 net-
work using rectifier activation functions and Gaussian pre- and post
activation noise with σ = 0.1, trained with k = 2 × d walkback
steps. All models used linear downward activations in the first layer
allowing to fully generate the zero-mean and unit variance normal-
ized data. The network weights were initialized with an uniform
distribution [36] and trained with early stopping. The mean-square-
error was used as objective function for training all models using
single spectrogram frames as input, i.e. frame-wise processing is per-
formed. In particular, we have two models, one maps the mixture to
the speech spectrogram, the other one is filtering the interfering sig-
nal from the mixture. The softmask is determined from the recovery
of both sources.

Figure 2 shows a reverberated clean speech spectrogram of the
utterance “Place green in b 5 now”, spoken by s20 (2a), a noise
spectrogram (2e), and the computed optimal softmask (2i). Speech
and noise are mixed at 0dB. Figure (2b), (2f) and (2j) show the re-
constructions of speech and noise generated by the GSN, given the
mixed signal and the resulting softmask. Figure (2c), (2g) and (2k)
show the reconstructions of the HCAE and Figure (2d), (2h), (2l) the
reconstructions generated by the CGBRBM, respectively. All mod-
els are optimized in a SD fashion. The recovered noise spectrogram
is best for HCAE, while the GSN is finding the best representation
for the speech spectrogram. The GSN obtains the most similar soft-
mask compared to the optimal mask visually and in terms of the
mean square error. The CGBRBM is not able to recover a meaning-
ful temporal structure in the spectrogram.

The GSN mostly outperforms the other models with respect to
the objective evaluation scores OPS and PESQ. This is shown in Ta-
ble 2, 3, 4, 5 for the SD, SI, MC, and UC task and different dB
conditions, respectively. Furthermore, we present OPS and PESQ
scores for the mixed signal and the optimally separated signal using
the ideal softmask. In general, networks with multiple layers outper-
form single layer networks. The frame-wise GSN was able to out-
perform in most cases any other model including the discriminative
MLPs of [10] which use 5 spectrogram frames as input. For the MN
and UN tasks the MLPs of [10] achieve sometimes a slightly better
PESQ value. Whereas, the MN task uses completely the same noise
Ids for both training and testing. This renders this task unrealistic
but nevertheless it has been included to be comparable to [9]. For the
SD and the SI task the GSN achieves a slightly better PESQ score

(a) speech (b) GSN (c) HCAE (d) CGBRBM

(e) noise (f) GSN (g) HCAE (h) CGBRBM

(i) ideal softmask (j) GSN (k) HCAE (l) CGBRBM

Fig. 2: Log-spectrograms of the utterance “Place green in b 5 now”
spoken by s20, the noise, and the resulting softmask recovered by
various frame-wise SD deep representation models. The first col-
umn shows the ideal softmask and the original noise and speech ut-
terance. The remaining columns depict the reconstructions by GSNs,
HCAEs, and CGBRBMs, respectively.

Model -6dB -3dB 0dB 3dB 6dB 9dB

PESQ
mixed signal 1.60 1.85 2.08 2.32 2.56 2.77
MLP[10] 1.72 1.96 2.22 2.44 2.63 2.82
MLP 1.72 1.96 2.22 2.42 2.64 2.84
CGBRBM 1.74 1.98 2.21 2.44 2.66 2.85
GBRBM 1.75 1.99 2.22 2.46 2.67 2.87
HCAE 1.77 2.01 2.38 2.60 2.80 3.01
GSN 2.09 2.30 2.53 2.75 2.94 3.14
optimal mask 4.50 4.50 4.50 4.50 4.50 4.50

OPS
mixed signal 9.67 10.34 11.68 13.81 17.31 21.52
MLP [10] 10.02 10.56 12.30 14.50 17.68 22.84
MLP 25.25 26.76 29.31 30.47 32.32 35.54
CGBRBM 15.68 17.05 18.69 20.81 23.22 27.28
GBRBM 9.93 10.59 12.02 14.80 17.95 23.26
HCAE 12.20 24.42 25.72 26.69 27.92 31.07
GSN 33.11 37.44 42.08 45.34 47.59 50.34
optimal mask 98.89 98.89 98.89 98.89 98.89 98.89

Table 2: PESQ and OPS results of SD task; Bold numbers denote
best results for each specific noise level.
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Model -6dB -3dB 0dB 3dB 6dB 9dB

PESQ
mixed signal 1.37 1.65 1.81 2.07 2.38 2.59
MLP[10] 1.47 1.66 1.87 2.16 2.36 2.56
MLP 1.50 1.69 1.90 2.12 2.43 2.64
CGBRBM 1.37 1.64 1.90 2.12 2.43 2.64
GBRBM 1.45 1.70 1.93 2.16 2.44 2.65
HCAE 1.51 1.75 1.99 2.22 2.52 2.71
GSN 1.62 1.87 2.06 2.29 2.55 2.75
optimal mask 4.50 4.50 4.50 4.50 4.50 4.50

OPS
mixed signal 10.02 10.59 12.45 14.20 16.70 21.88
MLP[10] 10.40 11.02 12.27 14.29 17.44 22.74
MLP 10.40 11.02 12.27 14.29 17.44 22.74
CGBRBM 10.16 11.14 12.64 14.24 17.13 22.57
GBRBM 9.81 11.15 12.60 14.21 16.96 22.13
HCAE 13.06 13.51 14.68 15.63 17.23 20.28
GSN 29.25 33.50 38.39 42.22 43.21 45.84
optimal mask 98.89 98.89 98.89 98.89 98.89 98.89

Table 3: PESQ and OPS results of SI task; Bold numbers denote
best results for each specific noise level.

for all noise levels. The PESQ is developed for evaluating narrow-
band speech signal. The OPS of the GSN is significantly better on
both tasks. These results indicate that learning deep representations
by jointly optimizing multiple layers as performed in GSNs might
be beneficial. However, the performance gap to the optimal mask
reveals that there is still significant improvement possible. One po-
tential problem might be the generalization potential of all models
due to lack of sufficient amount of data. We also performed infor-
mal listening tests confirming the results, i.e. utterances processed
by GSNs sound more natural and suppress the noise in a better way
than the other methods.

Model -6dB -3dB 0dB 3dB 6dB 9dB

PESQ
mixed signal 1.50 1.70 1.90 2.12 2.43 2.64
MLP [10] 2.44 2.65 2.83 3.00 3.15 3.30
MLP 1.85 2.04 2.20 2.40 2.61 2.84
CGBRBM 1.63 1.85 2.05 2.28 2.48 2.66
GBRBM 1.72 1.90 2.09 2.32 2.52 2.70
HCAE 1.82 1.96 2.19 2.36 2.55 2.72
GSN 2.23 2.44 2.63 2.85 3.06 3.24
optimal mask 4.50 4.50 4.50 4.50 4.50 4.50

OPS
mixed signal 9.44 10.39 12.36 14.23 17.03 22.15
MLP [10] 32.85 35.47 39.68 45.97 51.80 58.12
MLP 30.44 32.98 35.37 38.24 41.35 48.31
CGBRBM 9.91 10.78 12.60 14.87 19.16 33.00
GBRBM 10.05 10.67 12.76 15.45 19.99 33.92
HCAE 21.79 23.42 25.27 29.90 36.66 45.15
GSN 34.34 36.92 40.53 44.82 50.93 59.32
optimal mask 98.89 98.89 98.89 98.89 98.89 98.89

Table 4: PESQ and OPS results of MN task; Bold numbers denote
best results for each specific noise level.

Model -6dB -3dB 0dB 3dB 6dB 9dB

PESQ
mixed signal 1.61 1.83 1.95 2.15 2.35 2.56
MLP [10] 1.73 1.89 2.08 2.29 2.50 2.73
MLP 1.64 1.84 2.02 2.20 2.40 2.63
CGBRBM 1.67 1.86 2.04 2.21 2.40 2.62
GBRBM 1.65 1.85 2.05 2.23 2.43 2.64
HCAE 1.68 1.79 2.00 2.21 2.38 2.58
GSN 1.68 1.88 2.07 2.40 2.51 2.75
optimal mask 4.50 4.50 4.50 4.50 4.50 4.50

OPS
mixed signal 13.93 16.08 19.58 22.54 27.89 33.77
MLP 26.24 30.80 35.93 39.60 42.93 47.17
MLP [10] 26.13 21.99 22.03 26.11 32.23 41.33
CGBRBM 13.06 14.83 18.28 22.23 27.71 34.26
GBRBM 12.98 14.91 18.49 22.43 28.31 34.96
HCAE 22.99 26.64 30.43 33.47 36.59 40.09
GSN 26.63 31.44 36.46 40.86 45.39 50.42
optimal mask 98.89 98.89 98.89 98.89 98.89 98.89

Table 5: PESQ and OPS results of UN task; Bold numbers denote
best results for each specific noise level.

4. CONCLUSION

In this paper, we systematically analyze the effectiveness of rep-
resentation learning for SCSS. In particular, we evaluated Gauss
Bernoulli restricted Boltzmann machines (GBRBMs), conditional
Gauss Bernoulli restricted Boltzmann machines (CGBRBMs),
higher order contractive autoencoders (HCAEs), and generative
stochastic networks (GSNs) on a speaker-dependent (SD), speaker-
independent (SI), matched noise condition (MC) and unmatched
noise condition (UC) SCSS task using the CHiME and NOISEX
database. We applied a two model filtering approach, i.e. training
each model separately on mixed spectrograms and the corresponding
source representations. GSNs outperform HCAEs, RBMs and also
discriminative models, such as multi-layer perceptrons. In future,
we extend the models to explicitly model the temporal information.
Furthermore, we aim to use more realistic data and larger data sets
to obtain a better generalization of the learned representations. This
also includes models with more hidden layers. Additionally, formal
listening tests are performed.

5. REFERENCES

[1] Y. Bengio, “Learning deep architectures for AI,” Founda-
tions and Trends in Machine Learning, vol. 2, no. 1, pp. 1–127,
2009.

[2] D. Yu and L. Deng, “Deep learning and its applications to
signal and information processing,” IEEE Signal Processing
Magazine, vol. 28, no. 1, pp. 145–154, 2011.

[3] G. Hinton, L. Deng, G. E. Dahl, A. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury,
“Deep neural networks for acoustic modeling in speech recog-
nition.,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, 2012.

[4] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing
co-adaptation of feature detectors,” CoRR, 2012.

716



[5] S.T. Roweis, “Factorial models and refiltering for speech sep-
aration and denoising,” in EUROSPEECH, 2003, pp. 1009–
1012.

[6] A. Ozerov, P. Philippe, F. Bimbot, and R. Gribonval, “Adap-
tation of Bayesian models for single-channel source separation
and its application to voice/music separation in popular songs,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 15, no. 5, pp. 1564 –1578, 2007.

[7] D. D. Lee and H.S Seung, “Learning the parts of objects by
nonnegative matrix factorization,” Nature, vol. 401, pp. 788–
791, 1999.

[8] P. Smaragdis, “Convolutive speech bases and their application
to supervised speech separation,” IEEE Trans. Audio Speech
and Language Processing, vol. 15, no. 1, pp. 1–12, 2007.

[9] Y. Wang and D. Wang, “Cocktail party processing via struc-
tured prediction,” in Neural Information Processing Systems
(NIPS), 2012, pp. 224–232.
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