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ABSTRACT

We propose a set of novel audio features for classifying the style of
classical music. The features rely on statistical measures based on
a chroma feature representation of the audio data and describe the
tonal complexity of the music, independently from the orchestration
or timbre of the music. To analyze this property, we use a dataset
containing piano and orchestral music from four general historical
periods including Baroque, Classical, Romantic, and Modern. By
applying dimensionality reduction techniques, we derive visualiza-
tions that demonstrate the discriminative power of the features with
regard to the music styles. In classification experiments, we evaluate
the features’ performance using an SVM classifier. We investigate
the influence of artist filtering with respect to the individual compo-
sers on the classification performance. In all experiments, we com-
pare the results to the performance of standard features. We show
that the introduced features capture meaningful properties of musi-
cal style and are robust to timbral variations.

Index Terms— Tonal Features, Musical Style Classification

1. INTRODUCTION

In Music Information Retrieval, the classification of audio data into
genres and stylistic categories is a central task [1, 2]. There have
been several attempts to obtain a finer class resolution by considering
sub-classes of individual genres such as rock [3], electronic [4], or
ballroom dance music [5]. Most of these tasks have been addressed
using timbral or rhythmic features. In contrast, there are only few
methods concerning the subgenre classification for classical music.
Some of them use instrument categories as sub-classes [6], others
try to identify a small number of composers [7, 8]. Further work has
been performed considering only symbolic data [9, 10].

For musicologists and lovers of classical music, a categorization
into historical style periods may be helpful. Independent from the
timbre and sound of the music, a piano sonata, a string quartet, and
a symphony composed in the same musical style are often conside-
red similar. For this kind of similarity, the melodic and harmonic
properties of the music are crucial. The use of modulations, indi-
vidual chord changes, chord types, intervals or the pitch content of
the music constitute important style characteristics. Over the history
of Western music, certain evolutions can be observed with respect
to the underlying pitch content. For early music such as the Gre-
gorian chant and Renaissance vocal music, the pitches of a diatonic
scale were sufficient for most of the pieces. In Baroque and Clas-
sical music, characteristic modulations to related local keys played
an important role to clarify the musical structure. In the Romantic
period, an extended use of modulations and more dissonant chords
led to an increased complexity in the tonal domain, ending in a fully
equal use of all chromatic pitches in dodecaphonic music.

Inspired by these considerations, we propose a novel set of fea-
tures that correlate to some kind of tonal complexity and test the fea-
tures’ usefulness for style classification. Concepts for describing the
tonal complexity of popular music were tested in [11]. The suitabi-
lity of pitch class set categories for measuring degrees of tonality was
evaluated in [12]. Audio-based methods to quantify tonal comple-
xity were presented in [13,14]. To the authors’ knowledge, the use of
tonal complexity measures for style classification has been addressed
sparsely. Some approaches to describe musical style rely on different
aspects of tonality such as the usage of particular chords [9], inter-
vals [8], or key-related pitch class occurrences [15] and were tested
on MIDI or score data. As the main contribution of this paper, we
introduce novel measures for tonal complexity and show their use-
fulness for style analysis of classical music. To this end, we compare
these features against standard features regarding the performance in
visualizations and classification experiments. We have discussed the
musicological implications of some of these features in [16].

The paper is structured as follows: First, we explain the basic
chroma feature types and the smoothing procedure used for the fea-
ture calculation. Then, we introduce methods for quantifying tonal
complexity. Next, we present the evaluation dataset. Moreover, we
show visualizations of the feature space to demonstrate the features’
suitability for separating the classes. Finally, we present classifica-
tion results for different constellations of the features and the data.

2. FEATURES

2.1. Basic Features

To achieve invariance to timbre and orchestration, we build our sys-
tem on chroma features which have been shown to capture tonal cha-
racteristics and to be invariant against timbre variations to a large
extent [17, 18]. Let c = (c0, c1, . . . , c11)T ∈ RN denote a chroma
vector of dimension N := 12, with cn ≥ 0 indicating the energy
of the n-th pitch class. The indices n = 0, 1, 2, . . . , 11 correspond
to the twelve chroma values C, C], D, . . ., B. Because of the oc-
tave invariance, the features show a cyclic nature so that a transpo-
sition in pitch leads to circular shift. The temporal resolution is 10
chroma features per second (10 Hz). The features are normalized
columnwise with respect to the `1-norm so that ||c||1 = 1.

In real audio recordings, the partials belonging to other pitch
classes than the played note have an influence on the chroma distri-
bution. This may lead to a significant difference between the chroma
vector and the notated pitch classes at a time. To make chroma fea-
tures more robust to changes in timbre, several procedures have been
proposed. We use four different chroma types for our experiments:
The approach presented in [19, 20] uses a multirate pitch filter bank
for the chroma extraction. We use this chroma type as our baseline
representation (CP chroma). Jiang et al. [21] tested several filter-
bank-based chroma features on a chord recognition task and found a
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significant improvement using logarithmic compression before app-
lying the octave mapping. This CLP chroma feature [22] is used with
a compression parameter η = 1000 in our experiments. In [23], a
different chord recognition task was tested on several chroma feature
types where the Enhanced Pitch Class Profiles (EPCP) by Lee [24]
performed best. Here, the partials are considered using a multipli-
cative method called harmonic product spectrum (HPS). We use this
EPCP chroma with three iterations of the HPS. Finally, we use the
NNLS chroma method presented in [25]. Here, a Non-Negative Least
Squares (NNLS) algorithm is used to estimate the fundamental fre-
quencies which can be considered as an approximate transcription
before the chroma mapping. The approach significantly improved
the performance of a chord labeler.

2.2. Scale Dependence

The measurement of tonal complexity crucially depends on the time
scale of the observation. On a chromagram with fine resolution, the
measures give an estimate of the local complexity of chords and sca-
les. Regarding coarser levels, the complexity of several bars or a
whole section is calculated. Using a chroma histogram as input, the
complexity value refers to the pitch content of the full movement.
To this end, we use several smoothed versions of the chromagram
by applying a smoothing procedure to the initial chroma features
presented in [17]. For every feature type presented in Section 2.1

[Chroma] ∈ {CP,CLP,EPCP,NNLS}, (1)

we use four time scales with increasing window size: The initial
chromagram with a feature rate of 10 Hz [Chroma]local, a slightly
smoothed [Chroma]10

5 and a highly smoothed version [Chroma]200
100,

as well as a global chroma histogram [Chroma]global. After smoo-
thing, the features are normalized with respect to the `1 norm.

2.3. Complexity Features

Motivated by the considerations presented in 1, we want to find a
measure, say Γ, that expresses the complexity of the (local) tonal
content. To this end, we now propose several statistical measures
calculated on a chroma vector. The basic idea of all these features
is to calculate a measure for the flatness of a chroma vector. This
is motivated by the following considerations. On a fine level, the
simplest tonal item may be an isolated musical note represented by
a dirac-like (“sparse”) pitch class distribution

csparse =
(
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)T (2)

to which the lowest complexity value Γ(csparse) = 0 should be assi-
gned. Furthermore, a sparser chromagram describing, for example,
a diatonic scale should obtain a smaller complexity value than an
equal (“flat”) distribution cflat = c̃flat/||c̃flat||1 with

c̃flat =
(
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

)T
. (3)

The latter case where all twelve pitch classes have the same energy
could be found in dodecaphonic music and should be rated with the
highest complexity value Γ(cflat) = 1. In addition to the aforemen-
tioned boundary conditions, our feature values should increase for
growing tonal complexity and be scaled to unit range:

0 ≤ Γ ≤ 1. (4)

In the following, we present a number of features for capturing such
characteristics. Though not every feature fulfills all requirements, it
could be able to model an individual aspect of tonal complexity.

(1) Sum of chroma differences: To account for harmonic simila-
rity of pitch classes, we re-sort the chroma values to an ordering of
perfect fifth intervals (7 semitones) cfifth:

cfifth
n = c(n·7 mod 12). (5)

Then, we compute the absolute differences between all neighboring
chroma values:

Γ̃Diff(c) :=
∑N−1
n=0 |c

fifth
n+1 − cfifth

n |. (6)

Since Γ̃Diff(cflat) = 0 and Γ̃Diff(csparse) = 2, we rescale this fea-
ture, with γ1 := 2:

ΓDiff(c) := 1− Γ̃Diff(c)/ γ1. (7)

(2) Standard deviation of the chroma vector:

Γ̃Std(c) =
(

1
N−1

∑N−1
n=0

(
cn − 1

N

∑N−1
m=0 cm

)2)1/2 (8)

The standard deviation reaches its maximum for a sparse distribution
γ2 := ΓStd(csparse) = 1/

√
12 ≈ 0.29 so that we calculate the

rescaled feature in the following way:

ΓStd(c) = 1− Γ̃Std(c)/γ2. (9)

(3) Negative slope of a linear function: We re-order the chroma
vector entries to a descending series

cdescend =
(
cmax, . . . , cmin

)
. (10)

To measure the flatness, we apply linear regression assuming
cdescend
i being dependent on the index i. The slope λ(cdescend) of

the line that best fits cdescend in a least squares sense serves as fea-
ture value. For a sparse chroma vector, the fitted line has a slope of
γ3 = |λ(csparse)| ≈ | − 0.039|. Hence, we rescale this feature to

ΓSlope(c) = 1− |λ(cdescend)|/γ3. (11)

(4) Shannon entropy of the chroma vector:

ΓEntr(c) = −
(∑N−1

n=0 cn · log2(cn)
)
/ log2(N). (12)

(5) Non-Sparseness feature based on the relationship of `1- and
`2-norm [26], inverted by subtraction from 1:

ΓSparse(c) = 1−
(√
N − ||c||1||c||2

)
/
(√
N − 1

)
. (13)

(6) Flatness measure describing the relation between the geome-
tric and the arithmetic mean [27]:

ΓFlat(c) =
(∏N−1

n=0 cn
)1/N

/
(

1
N

∑N−1
n=0 cn

)
. (14)

(7) Angular deviation of the fifth-ordered chroma vector: We
re-sort the chroma values according to Eq. 5 obtaining a circular dis-
tribution of the pitch class energies—similar to the circle of fifths.
Therefore, we interprete cfifth as angular data and calculate the an-
gular deviation describing the spread of the pitch classes:

ΓFifth(c) =
(

1−
∣∣ 1
N

∑N−1
n=0 c

fifth
n exp

(
2πinπ

12

)∣∣)1/2

. (15)

All of the proposed features take values between 0 and 1, where
Γ(cflat) = 1 and Γ(csparse) = 0 is fulfilled. ΓDiff and ΓFifth re-
spect the ordering of the chroma entries and penalize distant relations
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in a perfect fifth sense. The remaining features are invariant against
permutation of chroma values. With this set of features, we consider
several flatness-related aspects of a chroma vector.

For each frame (chroma vector), we compute the introduced
complexity features. Then, we calculate the arithmetic mean and the
standard deviation to obtain classification features for the full track,
resulting in 2 × 7 = 14 features per track. This procedure is con-
ducted for the four chroma representation presented in Section 2.1
and for each temporal resolution explained in Section 2.2, resulting
in 14× 4× 4 = 224 feature dimensions in total.

3. EVALUATION

3.1. Dataset

For our evaluation, we use a dataset comprising 1600 tracks of clas-
sical music recordings, categorized into four historical periods Baro-
que, Classical, Romantic, and Modern. From a musicological point
of view, this constitutes a rather superficial categorization. Howe-
ver, the obtained simplified classification task can serve as a first
step towards a finer style analysis [28]. To investigate the timbre
dependence of the features, we collected for each period 200 tracks
of orchestra pieces and 200 tracks of piano music. Each of these
eight classes contains pieces by a minimum of five composers from
at least three different countries. Critical composers who cannot be
assigned clearly to one of the periods (such as, for example, Beetho-
ven or Schubert, who can be considered both as late classical or early
romantic composers) have been avoided. To preserve the variety of
movement types with respect to rhythm and emotion (major/minor
keys, slow/fast tempo, duple/triple meter), we included all parts for
most of the work cycles. More information about the dataset can be
found in [29], where this dataset was used for testing a different class
of features.

3.2. Dimensionality Reduction

To analyze the separation capability of the proposed features, we per-
form a dimensionality reduction technique know as Linear Discri-
minant Analysis (LDA). This supervised method projects the feature
space onto a low-dimensional subspace while separating the classes
as much as possible. The procedure can also be used as a prepro-
cessing step for classification experiments. For convenient visuali-
zation, we choose two subspace dimensions. First, we perform LDA
on all complexity features (Figure 1). With these features, the Clas-
sical, Romantic, and Modern styles can be separated well from each
other. Between the Modern era and the other periods, the best sepa-
ration is obtained. This indicates that our features can discriminate
between tonal (low complexity) and atonal (high complexity) music.
The desired separation of the Romantic style and the Classical style
may be the result of the higher tonal complexity of Romantic mu-
sic compared to Classical music. However, the classes of Classical
and Baroque music could not be separated well. Even though one
would expect a considerable difference between Barouqe and Clas-
sical harmony, these characteristics were not captured by the used
features and classification scheme.

To compare with common methods, we also test standard audio
features for calculating LDA visualizations of our data. We con-
sider Mel Frequency Cepstral Coefficients (MFCC), Octave Spec-
tral Contrast (OSC), Zero Crossing Rate (ZCR) and Audio Spectral
Envelope (ASE), Spectral Flatness Measure (SFM), Spectral Crest
Factor (SCF), as well as Spectral Centroid and Modulations thereof
(CENT). In addition to these timbre-related features, we calculate
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Fig. 1: LDA visualization for the full dataset, using complexity fea-
tures (224→ 2).
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Fig. 2: LDA visualization for the full dataset, using standard features
(238→ 2).
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Fig. 3: LDA visualization for the full dataset, using both complexity
features and standard features (462→ 2).

a normalized and a logarithmic version of the specific loudness, af-
ter grouping again into sub-bands [30]. For each audio track, we
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calculate mean and standard deviation of the frame-wise features re-
sulting in 238 features per track. When performing LDA using these
features, we observe a different distribution of the data (Figure 2).
In particular, Baroque and Classical music are separated well here.
This may be the result of a considerable change between these peri-
ods regarding the sound of the music. Indications for such a change
may be, for example, the disappearance of the figured bass (basso
continuo) in orchestral music—which is usually played with the in-
volvement of a harpsichord—or a different use of musical registers.
Romantic music, however, cannot really be identified with standard
audio features but is mixed up with Classical and even more with
Modern music. A possible reason for this may be the rather con-
tinuous evolution of instrumentation from the Classical period on.
For example, the scoring of an orchestra was extended step by step
from a small Classical orchestra (Haydn) to a huge Romantic orche-
stra (Bruckner) which many modern composers have changed only
slightly (Shostakovich).

Because of the complementary behaviour of complexity fea-
tures and standard features, the separation capability may benefit
from a combination of the two feature types. Figure 3 confirms
this assumption. Using both feature sets, Baroque and Classical mu-
sic can be discriminated very well, thanks to the standard features.
The good separation between Romantic and Modern may originate
mostly from the use of the complexity features. Discrimination of
Classical and Romantic music also benefits from the joint usage of
the features, but is still more difficult than separating the other clas-
ses. This is in accordance with musicological expectations since the
stylistic change from the Classical to the Romantic period is the least
distinctive one between all neighboring periods.

3.3. Classification Experiments

Finally, we want to evaluate the performance of the proposed featu-
res in style classification experiments. Therefore, we use a standard
Support Vector Machine (SVM) classifier with a Radial Basis kernel
function (RBF), using the implementation published in [31]. As an
alternative, a Gaussian Mixture Model (GMM) classifier was tested
leading to similar results. For evaluation, we conduct a three-fold
cross validation (CV). Since overtraining constitutes a problem for a
higher number of features (the so-called “curse of dimensionality”),
we apply LDA to the initial feature space of the training data. For
our four-class problem, we use three feature dimensions as input for
the SVM classifier. To optimize the RBF kernel parameters of the
SVM, we perform a grid search on the training folds.

To investigate the timbre dependence of the approach, we consi-
der different subsets of the data: Full Data contains all 1600 tracks;
for the Piano and Orchestra subsets, only one type of instrumen-
tation is considered (800 tracks). As mentioned in Section 3.1, the
classes usually contain more than one track from an album. Thus, we
have to take care of the “album” or “artist effect”: If both training and
test folds contain items from the same CD recording, the system can
adapt to technical artifacts or the specific sound of a recording rather
than learning musically meaningful properties [32,33]. Additionally,
we want to avoid substantial influence of a specific composer style
on the classification but capture the overall style characteristics of
a period. Motivated by these considerations, we apply a “composer
filter” which forces a composer’s works to be in the same fold, thus
avoiding the album effect and a “composer effect” at the same time. 1

The classification results are shown in Table 1. Let us start with
the results when using a three-fold CV without composer filter. All

1The dataset does not contain works by different composers that are on
one album.

Features Dim. Full Data Piano Orchestra

Classification accuracy without composer filter

Complexity 224 .86 .87 .86

Standard 238 .87 .89 .86

Combined 462 .92 .86 .81

Classification accuracy with composer filter

Complexity 224 .69 .64 .75

Standard 238 .54 .29 .71

Combined 462 .67 .46 .67

Table 1: Results for different constellations of classification featu-
res. The upper block shows the results for the combination of all
features without using composer filtering. In the last block, these
experiments are repeated using the composer filter. “Dim.” denotes
the number of feature dimensions before performing LDA.

feature constellations yield high results. For example, the classifica-
tion with complexity features achieves an accuracy of .87 for piano
music and .86 for orchestral music as well as .86 for the full dataset.
In comparison to the complexity features, standard features perform
similar on this task, with a slightly better result of .89 for piano mu-
sic. Combining the two feature types, the classification accuracy for
the full dataset improves to .92. This is in accordance with the ob-
servation of Section 3.2, where the separation of classes for the LDA
visualizations could be improved as well. In contrast, the accuracies
for the isolated datasets are worse for the combined features.

Now, let us consider the classification with composer filter. In
general, the results get much worse. Looking at the complexity
features, the accuracy for the full data decreases to .69. In ge-
neral, standard features are more affected by the composer filter
than complexity features. This may originate from the album effect
or composer-specific characteristics. We find an extreme case for
piano data: Using standard features, the classification fails (with .29
slightly above chance level) whereas complexity features (.64) still
yield some meaningful result. This may indicate that our complexity
features capture some “musical” information that is not related to
timbre but to tonal aspects. Moreover, complexity features perform
even better than all features combined when using a composer filter.

We have conducted first experiments to study the influence of
parameters such as the chroma feature type, the temporal resolution
of the chroma, or the individual computation method for the com-
plexity features. The results of such studies will be part of future
work.

4. CONCLUSIONS

We have proposed a novel set of timbre-invariant audio features for
the classification of classical music style. The features are based on
chroma representations and relate to the tonal complexity of the mu-
sic. Experiments on piano and orchestra recordings point out that
our proposed tonal complexity features can be used in combination
with standard audio features to better separate the historical periods.
We have shown this by visualizing supervised reductions of the fea-
ture space. In classification experiments, the proposed complexity
features exhibit a high robustness to composer- and artist-specific
properties. Thus, the features may describe some musically mea-
ningful information which standard features do not capture.
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[4] Daniel Gärtner, Christoph Zipperle, and Christian Dittmar,
“Classification of electronic club-music,” in Proceedings of
the DAGA 2010: 36. Jahrestagung für Akustik, 2010.

[5] Simon Dixon, Elias Pampalk, and Gerhard Widmer, “Classifi-
cation of dance music by periodicity patterns,” in Proceedings
of the 4th International Conference on Music Information Re-
trieval (ISMIR), 2003.

[6] Christian Simmermacher, Da Deng, and Stephen Cranefield,
“Feature analysis and classification of classical musical instru-
ments: An empirical study,” in Advances in Data Mining. Ap-
plications in Medicine, Web Mining, Marketing, Image and Si-
gnal Mining, pp. 444–458. Springer, Berlin and Heidelberg,
2006.

[7] Zhen Hu, Kun Fu, and Changshui Zhang, “Audio classical
composer identification by deep neural network,” Computing
Research Repository, 2013.

[8] Peter von Kranenburg and Eric Baker, “Musical style recogni-
tion - a quantitative approach,” in Proceedings of the Confe-
rence on Interdisciplinary Musicology (CIM), 2004.

[9] Mitsunori Ogihara and Tao Li, “N-gram chord profiles for
composer style identification,” in Proceedings of the 9th Inter-
national Conference on Music Information Retrieval (ISMIR),
2008.

[10] Lesley Mearns and Simon Dixon, “Characterisation of compo-
ser style using high level musical features,” in Proceedings of
the 11th International Society for Music Information Retrieval
Conference (ISMIR), 2010.

[11] Mitchell Parry, “Musical complexity and top 40 chart perfor-
mance,” 2004.

[12] Aline Honingh and Rens Bod, “Pitch class set categories
as analysis tools for degrees of tonality,” in Proceedings of
the 11th International Society for Music Information Retrieval
Conference (ISMIR), 2010.

[13] Matthias Mauch and Mark Levy, “Structural change on multi-
ple time scales as a correlate of musical complexity,” in Pro-
ceedings of the 12th International Society for Music Informa-
tion Retrieval Conference (ISMIR), 2011.

[14] Sebastian Streich, Music Complexity: A Multi-Faceted Des-
cription of Audio Content, Ph.D. thesis, Universitat Pompeu
Fabra, Barcelona, Spain, 2006.

[15] Francis J. Kiernan, “Score-based style recognition using artifi-
cial neural networks,” in Proceedings of the 1st International
Symposium on Music Information Retrieval (ISMIR), 2000.

[16] Christof Weiss and Meinard Müller, “Quantifying and visuali-
zing tonal complexity,” in Proceedings of the 9th Conference
on Interdisciplinary Musicology (CIM), 2014.

[17] Meinard Müller, Frank Kurth, and Michael Clausen, “Chroma-
based statistical audio features for audio matching,” in Procee-
dings Workshop on Applications of Signal Processing (WAS-
PAA), 2005.
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