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ABSTRACT

In this paper, a framework for automatic pattern discovery
within an audio recording is proposed. The concept of the
proposed framework stems from music information dynam-
ics and is realized by Variable Markov Oracle. Music infor-
mation dynamics is the research area focusing on information
theoretic measures describing musical structure and is thus
closely related to the field of music pattern discovery. Vari-
able Markov Oracle is a data structure that provides both fast
retrieval of repeated sub-clips from a signal and efficient cal-
culation of music information dynamics measures. Evalua-
tion of the proposed framework is performed on the JKU Pat-
terns Development Dataset with significantly improved per-
formance of the current state of the art.

Index Terms— Music information retrieval, Pattern anal-
ysis, Data structures, Variable Markov Oracle

1. INTRODUCTION

Discovering musical patterns (motifs, themes, sections, etc.)
is a task defined as identifying salient musical ideas that re-
peat at least once within a piece [1, 2]. These patterns could
potentially be overlapping with each other and not covering
the whole piece in contrast to the “segments” found by music
segmentation task [3]. In addition, the occurrences of these
patterns could be inexact in terms of harmonization, rhythmic
pattern, melodic contours, etc. Discovering patterns in mu-
sical pieces of either symbolic or audio representations has
been investigated [2] and is of interest to the broad community
of both music and signal processing. In this paper, the focus
is on pattern discovery from audio recordings. For a com-
prehensive review on studies of symbolic representations, the
readers are referred to [2]. Previous researches on pattern dis-
covery from audio recordings either used F0-estimation with
beat-tracking techniques to enable geometric representation
methods on audio recordings [4], or extended music segmen-
tation techniques with greedy search algorithms [5, 6].
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In this paper, the use of Variable Markov Oracle (VMO
hereafter) as the basis of the proposed framework differs from
other approaches in the sense that music information dynam-
ics is used to identify the musical structure for the pattern dis-
covery task. Research in music information dynamics [7–10]
focuses on quantifying the inherent structure of music signals
from an information theoretic perspective. Measurements de-
rived from music information dynamics are used in [11–13] as
indicators of significant structural changes in the applications
of music structure analysis and melody phrase identification,
which are closely related to the task described in this paper.

VMO is a data structure capable of symbolizing a sig-
nal by clustering the feature frames in the signal, derived
from Factor Oracle (FO hereafter) [14] and Audio Oracle
(AO hereafter) [15]. FO is a variant of suffix tree devised for
retrieval of patterns from a symbolic sequence [14]. AO is the
signal extension of FO capable of indexing repeated sub-clips
of a signal sampled at discrete time, and has been applied to
audio query [16], audio structure discovery [13] and machine
improvisation [17]. VMO was first proposed in [18, 19] for
devising an efficient audio query-matching algorithm. In this
paper, the capability of using VMO to find repeated sub-clips
in a signal with an unsupervised manner is shown.

This paper is structured as follows: in section 2, the
method of utilizing music information dynamics with VMO
for music structure / pattern discovery is described; the spec-
ifications of the repeated theme discovery task from audio
recordings are presented in section 3; evaluation metrics
and results are presented in section 4, then conclusions are
discussed in section 5.

2. MUSIC INFORMATION DYNAMICS AND VMO

Music information dynamics uses information theoretic mea-
sures to quantify temporal / structural changes while a mu-
sic piece unfolds itself [7]. The measurement is achieved by
tracing the mutual information between present and past ob-
servations of an assumed source random process generating
the music signal. Since in most cases the true source pro-
cess of the music signal generation is unknown, the infor-
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mation theoretic measures are approximated bsuffixesy either
tractable parameterized probabilistic models [8, 9] or com-
pression algorithms [13]. In this paper, the later approach is
used since the information theoretic measurements of a music
signal could be approximated efficiently by the use of VMO
via its accompanying compression algorithm [13, 20].

2.1. Variable Markov Oracle

VMO symbolizes a signal O, sampled at time t, into a sym-
bolic sequence Q = q1, q2, . . . , qt, . . . , qT , with T states and
with frame O[t] labeled by a symbol qt. The symbols are
formed by tracking suffix links along the states in an oracle
structure. An oracle structure (either FO, AO or VMO) carries
three kinds of links, forward link, suffix link and reverse suf-
fix link. Suffix link is a backward pointer that links state t to
k with t > k, without a label and is denoted by sfx[t] = k.

sfx[t] = k ⇐⇒ the longest repeated suffix of
{q1, q2, . . . , qt} is recognized in k.

Suffix links are used to find repeated patterns in Q. In order
to track the longest repeated suffix at each time index t, the
length of the longest repeated suffix at each state t is com-
puted by the algorithm described in [14] and is denoted by
lrs[t]. lrs is essential to the on-line construction algorithm
of an oracle structure [14] and its model selection [13]. Re-
verse suffix link, rsfx[k] = t, is basically the suffix link in
reverse direction. rsfx is also part of the on-line oracle con-
struction algorithm. sfx, lrs and rsfx allow the design of
the proposed pattern discovery algorithm described in section
3.2.

Forward links are links with labels and are used to retrieve
any of the factors from Q, starting from the beginning of Q
and following the path formed by forward links. Since the
forward links are not used in the algorithm proposed in this
paper, the specifications of it are omitted here and readers are
referred to [14] for details.

The last piece needed for the construction of VMO is the
threshold value, θ. θ is used to determine if the incoming
O[t] is similar to to one of the frames following the suffix link
started at t − 1. Two frames, O[i] and O[j], are assigned the
same symbol if |O[i] − O[j]| ≤ θ. In extreme cases, θ being
too low leads to VMO assigning different symbols to every
frame in O and θ being too high leads to VMO assigning the
same symbol to every frame in O. As a result, both extreme
cases are incapable of capturing any patterns (repeated suf-
fixes) of the signal. In section 2.2, the use of Information
Rate (IR hereafter) to select the optimal θ in the context of
music information dynamics is described.

The on-line construction algorithms of VMO are proposed
in [18] and not repeated here. An example of a constructed
VMO structure and how lrs and sfx are related to repeated
patterns is shown in Fig. 1. The symbols formed by gathering
states connected by suffix links have the following properties;
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Fig. 1. (Top) A VMO structure with symbolized signal
{a, b, b, c, a, b, c, d, a, b, c}, upper (normal) arrows represent
forward links with symbols for each frame and lower (dashed)
are suffix links. Values outside of each circle are the lrs
value for each state. (Bottom) A visualization of how patterns
{a, b, c} and {b, c} are related to lrs and sfx.

1) states connected by suffix links are guaranteed to have dis-
tances less than θ, 2) symbols related to each other sequen-
tially because frames labeled by the same symbol share sim-
ilar context by the use of suffix links, 3) each state is labeled
by one symbol since each state has only one suffix link, 4) the
alphabet size of the created symbols is not specified before the
construction and is related to the threshold θ value. The suf-
fix structures created by VMO or AO on the same signal are
identical. The advantage of using VMO is the computational
efficiency provided by the explicit symbolization of the signal
done during its construction as described in [18].

2.2. Model Selection via Information Rate

With different θ values, VMO constructs different suffix struc-
tures and different symbolized sequences from the signal. To
select the one sequence with the most informative patterns, IR
is used as the criterion in model selection between the differ-
ent structures generated by different θ values. IR is an infor-
mation theoretic measure capable of measuring the informa-
tion content of a time series [7] in terms of the predictability
of its source process on the present observation given past
ones. In the context of pattern discovery with VMO, the VMO
with higher IR value indicates more of the repeating subse-
quences (ex. patterns, motives, themes, gestures, etc) are cap-
tured than the ones with lower IR value.

Since VMO is derived from AO [18], the same approach
to choose θ by calculating IR is applied here [13]. In brief,
given the definition of IR and let xN1 = {x1, x2, . . . , xN}
denoting time series xwithN observations,H(x) the entropy
of x,

IR(xn−1
1 , xn) = H(xn)−H(xn|xn−1

1 ), (1)

In a nutshell, IR is the mutual information between the present
and past observations, which is maximized when there is a
balance between variation and repetition in the symbolized
signal. The value of IR could be approximated by replacing
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Fig. 2. IR values are shown on vertical axis while θ are on
horizontal axis. The solid curve in blue color shows the re-
lations between the two quantities and the dashed black line
indicates the chosen θ by locating the maximal IR value. Em-
pirically the IR curves possess quasi-concave function shapes
thus global maximum could be located.

the entropy terms in Eq. 1 with complexity measures asso-
ciated with a compression algorithm, which are the number
of bits used to compress xn independently and compress xn
using the past observations xn−1

1 . In [20], a lossless compres-
sion algorithm, Compror, proven to have similar performance
to gzip and bzip2 based on FO and lrs is provided, and the
detail formulation of how Compror, AO and IR are combined
is provided in [13]. A visualization of the sum of IR values
versus different θs on one of the music recordings used in the
experiment is depicted in Fig. 2.

3. EXPERIMENT

The dataset chosen for the pattern (repeated theme) discovery
experiment is the JKU Pattern Development Dataset [1]. This
dataset consists of five polyphonic classical music pieces or
movements in both symbolic representation and audio record-
ings. Ground truth of repeated patterns (themes) for each
piece is annotated by multiple musicologists and experts. In
this paper, the focus is on repeated pattern discovery from au-
dio recordings. 1

3.1. Feature Extraction

For the repeated themes discovery task, the feature has to
meet the following requirements: 1) it extracts harmonic con-
tent of the audio signal in terms of classical Western music
tuning; 2) it shows information on a music metrical resolution
not at analysis frame level; 3) invariance for the motif with
and without harmonization (accompaniment following tonal-
ity and chord progression); 4) transposition (moving themes
up or down by a constant pitch interval) invariance. Motivated
by these four requirements, the feature extraction process is
designed as follows. To meet 1), chromagram, a commonly
used feature characterizing harmonic content [21], is chosen.
For a mono audio recording sampled at 44.1k Hz, the record-
ing is firstly downsampled to 11025Hz, secondly a spectro-
gram is calculated using a Hann window of length 8192 with

1Full experiment results and codes could be accessed at https://
github.com/wangsix/VMO_repeated_themes_discovery

64 samples overlap, then the constant-Q transform of the
spectrogram is calculated with frequency analysis ranging
between fmin = 27.5Hz to fmax = 5512.5Hz and 12 bins
per octave. Finally, the chromagram is obtained by folding
the constant-Q transformed spectrogram into one single oc-
tave to represent how energy is distributed among the 12 pitch
classes. For 2), the chroma frames are aggregated with a me-
dian filter according to the beats found by a beat tracker [22]
conforming to the music metrical grid. To have finer rhythmic
resolution, each beat identified is spliced into two sub-beats
before chroma frame aggregation. A final post processing
step for 3) is applied to the sub-beat-synchronous chroma-
gram by whitening it with a log function. The motivation of
whitening is to boost the harmonic tones implied by the mo-
tives so that the difference between the same motive with and
without harmonization is reduced. To consider transposition,
the distance function used in VMO is replaced by a cost func-
tion having transposition invariance. To have a transposition
invariant cost function, a cyclic permutation with offset k, on
an n-dimensional vector x = (x0, x1, . . . , xn−1) is defined
as, cpk(x) := {xi → x(i+k mod n),∀i ∈ (0, 1, . . . , n − 1)},
then the transposition invariant dissimilarity d between two
vectors x and y is defined as, d = mink{‖x − cpk(y)‖2}.
n = 11 for chroma vector and the cost function is used dur-
ing the construction of VMO. A visualization of the result
chromagram is depicted in the top plot of Fig 3.

3.2. Repeated Themes Discovery

For the specific task of repeated themes discovery, a pattern
discovery algorithm is devised based on VMO and shown in
Algorithm 1. The idea behind the algorithm is to track pat-
terns by following sfx and lrs. sfx provides the locations
of repeated suffixes and lrs contains the length for these re-
peated suffixes. In line 5 of Algorithm 1, state i is checked
to make sure no redundant patterns are recognized and the
lengths of patterns are larger than a user-defined minimum
L. From line 6 to 10, the algorithm recognizes occurrences
of established patterns and from line 11 to 15 it detects new
patterns and stores them into Pttr and PttrLen. Algorithm
1 returns Pttr, P ttrLen and K. Pttr is a list of lists with
each Pttr[k], k ∈ {1, 2, . . . ,K}, a list containing the ending
indices of different occurrences of the kth pattern found. K
is the total number of patterns found. PttrLen has K values
representing the length of the kth pattern in Pttr.

After the feature sequence O is extracted from the au-
dio recording as described in the section 3.1, thresholds
θ ∈ {0.0, 0.001, 0.002, . . . , 2.0} are used to construct mul-
tiple VMOs with O, then the one VMO with the highest IR
is fed into Algorithm 1 with L set to 5 empirically to find
repeated themes and their occurrences. The result for find-
ing repeated themes in one of the audio recordings from the
dataset is shown in the bottom plot of Fig 3.
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Algorithm Fest Pest Rest Fo(.5) Po(.5) Ro(.5) Fo(.75) Po(.75) Ro(.75) F3 P3 R3 Time (s)
Proposed 54.87 68.93 55 71.67 77.34 67.09 70.48 72.7 68.55 49.05 62.59 49.77 96

[6] 49.8 54.96 51.73 38.73 34.98 45.17 31.79 37.58 27.61 32.01 35.12 35.28 454
[4] 23.94 14.9 60.9 56.87 62.9 51.9 − − − − − − −
[5] 41.43 40.83 46.43 23.18 26.6 20.94 24.87 32.08 21.24 28.23 30.43 31.92 196

Table 1. Results from various algorithms on the JKU Patterns Development Dataset. Scores are averaged across pieces.

Algorithm 1 Pattern Discovery using VMO
Require: constructed VMO, V, of length T and a minimum pattern length

L.
Ensure: sfx,rsfx,lrs ∈ V
1: Initialize Pttr and PttrLen as empty lists.
2: Initialize prevSfx = −1,K = 0
3: for i = T : L do
4: pttrFound = False
5: if i − lrsV [i] + 1 > sfxV [i] ∧ sfxV [i] 6= 0 ∧ lrsV [i] ≥ L

then
6: if ∃k ∈ {1, . . . ,K},sfx[i] ∈ Pttr[k] then
7: Append i to Pttr[k]
8: PttrLen[k]← min(lrs[i], P ttrLen[k])
9: pttrFound = True

10: end if
11: if prevSfx− sfx[i] 6= 1 ∧ pttrFound == False then
12: Append {sfx[i], i,rsfx[i]} to Pttr
13: Append min{lrs[{sfx[i], i,rsfx[i]}]} to PttrLen
14: K ← K + 1
15: end if
16: prevSfx← sfx[i]
17: else
18: prevSfx← −1
19: end if
20: end for
21: return Pttr, P ttrLen,K
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Fig. 3. (Top) Beat-synchronous Chromagram, (Middle)
Ground truth from JKU dataset. (Bottom) Found patterns by
Algorithm 1.

4. EVALUATION

The evaluation follows the metrics proposed in the Music
Information Retrieval Evaluation eXchange (MIREX) [1].
Three metrics are considered for inexact pattern discovery.
For each metric, standard F1 accuracy score, defined as

F1 = 2PR
(P+R) , precision P and recall R are calculated. The

first metric is the establishment score (est) which shows how
each ground truth pattern is identified and covered (taking
inexactness into account, not considering occurrences) by the
algorithm. The second metric is the occurrence score (o(c))
with a threshold c. The occurrence score measures how well
the algorithm performs in finding occurrences of each pat-
tern. The threshold c determines if an occurrence should be
counted or not. The higher the c, the lower the tolerance.
c = {0.5, 0.75} are used in standard MIREX evaluation.
The last metric is the three-layer score that considers both
the establishment and occurrence score. The results of the
proposed framework are listed in Table 1 with comparison to
previous works.

From Table 1, it is clear that the proposed framework sig-
nificantly improves the state of art reported in [6] in all met-
rics. The significant improvements of the F1 scores indicates
that the proposed framework is capable of finding both cor-
rect patterns and their occurrences without biasing from ei-
ther type-1 or type-2 errors. In addition to the improvement of
accuracy, the proposed framework is also significantly faster
than other approaches as reported in Table 1. The compu-
tation is timed the same way as reported in [6], which ex-
cludes the calculation of sub-beat-synchronous chroma and
only measures on the pattern discovery routines. In this paper,
it includes finding the optimal θ value, construction of VMO
and Algorithm 1. One major reason causing less computation
time is that the proposed framework avoids the calculation of
self-similarity matrix [6, 21] of the chromagram.

5. CONCLUSIONS

In this paper, a framework for discovering patterns embedded
in a signal is proposed and shown to improve the state of the
art significantly for the task of discovering repeated themes
from audio recordings. The core of the framework is VMO, a
data structure equipped with model selection criterion derived
from music information dynamics and capable of symboliz-
ing a signal while keeping its temporal dynamics. From the
experiment result of this paper, it is shown that IR is indeed
a good indication for temporal structuredness. The combina-
tion of IR and VMO is shown to have potentials in unsuper-
vised structural discovery problems as well.
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