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ABSTRACT 

 
The Feedback active noise control (FBANC) scheme is 
widely used in portable ANC applications. But the FBANC 
has un-stability problem caused by the modeling error of the 
electro-acoustic path in its feedback mechanism. To analyze 
the stability problem, we propose a new stability analysis 
method utilizing the magnitude component of the open loop 
frequency response of the FBANC. With the proposed 
method, a stability bound equation is obtained in terms of 
the length of delay error of secondary path, the ANC filter 
length and the center frequency of primary noise. The 
stability bounds of the proposed method are verified by 
comparing with both the original Nyquist condition and the 
simulation results. 
 

Index Terms— Feedback ANC, Stability, Secondary 
Path, Closed-form equation, Nyquist stability criterion 
 

1. INTRODUCTION 
 
Active noise control (ANC) is intended to suppress an 
external noise in an active way that an anti-noise with 
opposite phase and same magnitude cancels the external 
noise [1-2]. To generate such anti-noise, in the feed-forward 
ANC (FFANC) scheme, which is the typical ANC scheme, a 
reference signal is captured at the noise source and used for 
input of the ANC adaptive algorithm. In contrast to the 
FFANC, the feedback active noise control (FBANC) 
internally generates a reference signal by utilizing a 
feedback mechanism. Because of the convenience that a 
microphone or sensor for the reference signal doesn't need to 
be installed at the noise source, the FBANC scheme is 
widely applied in portable ANC applications, e.g., ANC 
headphones [3,4]. 

One of the difficulties in designing the FBANC 
applications is un-stability problem caused by its feedback 
mechanism. In the feedback path of FBANC, there is an 
estimated model block of secondary path which is modeled 
in a form of an FIR filter. The secondary path is an electro-
acoustic path connecting a loud speaker, a microphone, 
acoustic propagation path and AD/DA converters. 
Theoretically, if the secondary path model is perfectly 
estimated, the FBANC scheme has no stability problem [1-

2]. Since it is very difficult to accurately estimate because of 
its nonlinear and time-varying properties, the FBANC 
always has the potential un-stability problem [3-4]. 

In this paper, we analyze the un-stability problem of the 
FBANC system caused by the estimation error of delay 
component in the secondary path model. A closed-form 
equation of the stability bound of the delay error was 
analytically derived in terms of the ANC filter length and the 
noise's frequency. One of the most common methods to 
determine the stability of feedback systems is analyzing 
pole/zero of a system's characteristic equation. But this 
method is generally difficult to apply to the feedback ANC 
system because the feedback ANC system's characteristic 
equation is generally very high order. Specially, when the 
secondary path model has some delay error, the order 
equation becomes even higher and very complicated to solve. 
In [5], to overcome the complicated nature of the FBANC, 
the system's convergence condition is analyzed using 
transfer function domain analysis technique. But the effect 
of the delay error of the estimated secondary path model is 
excluded in the analysis. 

In order to obtain the stability condition equation without 
solving the high-order pole/zero equation, a new stability 
analysis method was proposed. The basic concept of the 
proposed method is based on the Nyquist stability criterion. 
In the Nyquist stability criterion, a feedback system's 
stability is guaranteed when the polar plot of the open loop 
frequency response does not enclose the Nyquist point (-1,0) 
for any frequency [6]. Basically, the Nyquist technique is 
considered as a trial-and-error based approach. Where, many 
drawings of polar-plots are needed to find the stability 
bounds. 

Instead of this original Nyquist definition, we introduce a 
tighter stability condition such that the open loop frequency 
response’s polar plot must lie in the unit-circle, equivalently, 
the magnitude response of the polar plot must be less than 
1.0 for all frequency. From the tighter stability condition, the 
stability bounds of the system parameters are derived in a 
closed-form equation. One of the significant advantages 
compared to the Nyquist technique is that the closed-form 
equation can provide the fast computation of parameter 
bounds. Real-time computation of stability bounds will be 
very useful for the design and operation of the FBANC 
system. The stability condition of the proposed approach 

669978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



provides narrower parameter bounds compared to those of 
the original Nyquist stability condition. Considering the 
practical operating ranges of the FBANC system, such as the 
range of noise frequency, the dimension of secondary path 
and the level of noise, etc., the lost parameter range is small 
enough to neglect in many applications. 

 
2. THE STABILITY PROBLEM OF THE FEEDBACK 

ANC SYSTEM 
 

In this section, we investigate the stability problem caused 
by the secondary path modeling error of the FBANC system. 
A typical structure of the adaptive feedback ANC system is 
shown in Fig. 1. The FBANC system suppresses the primary 
noise d(n) by generating the anti-noise y(n). The signal e(n) 
denotes the residual. The reference signal x(n) is generated 
through the feedback path as expressed in (1). 
 ˆˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( )x n y n e n y n s n e n d n′= + = ∗ + = . (1) 

 
 
The followings are the rest of definitions. 

W(z) : the N-tap adaptive filter, 
S(z) : The secondary path, the electro-acoustic coupling 

path from the loudspeaker to the error microphone, 
ˆ( )S z  : The internal estimated model of S(z), 
ˆ( )d n : the estimated primary noise. 
Stability of a linear feedback system can be determined by 

examining its overall transfer function's pole/zero locations. 
The FBANC system's closed-loop transfer function from 
d(n) to e(n) can be obtained as, 

 
ˆ( ) 1 ( ) ( )( ) ˆ( ) 1 ( )[ ( ) ( )]

E z W z S zH z
D z W z S z S z

−
= =

+ −
 (2) 

In order to examine the effect of the delay error explicitly, 
the transfer functions of the secondary path and its estimated 
model are modeled as simple delay components as 

( )S z z−∆= and ˆˆ( )S z z−∆= , respectively. By plugging the 
simple delay models to (2), the transfer function changes as 

 
ˆ

ˆ
1 ( )( )

1 ( )[ ]
W z zH z

W z z z

−∆

−∆ −∆

−
=

+ −
 (3) 

When there is no delay error, i.e., ˆ( ) ( )S z S z= , the 
denominator of (3) becomes one and the overall transfer 
function  H(z) becomes 

ˆ( ) 1 ( ) ( ) 1 ( ) ( )H z W z S z W z S z= − = − . 
Here, the FBANC system has no poles and becomes an all-
zero system which guarantees its stability. 

However, when the estimated secondary path ˆ( )S z has a 
delay error, the denominator of (3) becomes a high order 
equation. This is because the adaptive filter W(z) is generally 
tens to hundreds order, and the secondary path S(z) and its 
estimation ˆ( )S z  also contain a very long delay because of 
the acoustical propagation path. 

In order to make sure that such system is stable, all the 
poles should exist in the unit-circle of the z-plane. However, 
it is difficult to obtain the roots of the denominator of (3) 
because the equation is a very high order. Moreover, the 
adaptive filter W(z) is time-varying and determined 
depending on characteristics of the primary noise d(n). 

 
3. NYQUIST PLOT-BASED STABILITY ANALYSIS 

OF THE FEEDBACK ANC SYSTEM 
 
A new stability analysis method is proposed to obtain the 
stability condition of the feedback ANC system as a form of 
a closed-form equation. In the proposed method, the 
complicated stability problem of obtaining roots of the high-
order pole-zero equation is simplified as a simple inequation 
problem consisting of several sine functions. The closed-
form stability condition is derived in terms of length of delay 
error of secondary path, ANC filter length and center 
frequency of primary noise. 

The basic concept of the proposed method is based on the 
Nyquist stability criterion [6]. The Nyquist stability 
definition is that the polar plot of the open loop frequency 
response must not enclose the Nyquist point (-1,0) for all 
frequency. Instead of this original Nyquist definition, we 
introduce a tighter stability definition that the frequency 
response ˆ( )[ ]j j jW e e eω ω ω− ∆ − ∆−  must lie in the unit-circle. 
This proposed condition can be expressed as the magnitude 
of the frequency response for 0 2ω π≤ <  is less than 1.0 as 
shown in the following, 
 ˆ| ( ) | | | 1 for 0 2j j jW e e eω ω ω ω π− ∆ − ∆⋅ − < ≤ <  (4) 

In (4), by investigating the magnitude of ( )jW e ω  and 
ˆ| |j je eω ω− ∆ − ∆− , an equation of the stability bounds can be 

obtained. The first term ( )jW e ω  is a magnitude response of 
the adaptive filter. ˆ| |j je eω ω− ∆ − ∆−  is a length of base of an 
isosceles triangle having unit length legs and a vertex angle 
ω  as shown in Fig. 2, and can be expressed as a sine 
function as shown in (4). 
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Fig. 1. Block diagram of a typical adaptive feedback ANC 
system. 

670



 ˆ
ˆ

| | 2sin
2

j je eω ω
ω

− ∆ − ∆
∆ − ∆

− =  (5) 

The magnitude response of the adaptive filter ( )jW e ω   
can be obtained as a simple formation when the primary 
noise d(n) is assumed to be a single-tone sinusoid 

( )0( ) cosd n A nω φ= + . 0ω  is the center frequency of the 
noise and φ  is the phase. The coefficients of the ANC filter 
W(z) are assumed to be at the optimum state. The optimum 
filter response for the single tone noise d(n) can be obtained 
from (3) as 
 ( ) 0

0

ˆjj
oW e e ωω

ω ω

∆

=
=  (6) 

which makes the overall transfer function ( )
0

0jH e ω

ω ω=
= .  

The N-tap FIR ANC filter for the optimum response in (6) 
can be designed as 

 0
,

2 ˆcos[ ( )] 0, 1, , 1

0
o i

i for i N
w N

elsewhere

ω + ∆ = −= 




  

 0 .
ˆcos[ ( )] R ii wω= + ∆ ⋅  (7) 

where .R iw is an  N-tap rectangular window. 

The frequency response of the ANC filter ( )j
oW e ω  can 

be expressed as the convolution of the discrete-time Fourier 
transform of the cosine function and that of the rectangular 
window as (8). 
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 (8) 

where [ ]⋅  is the Fourier transform operation and ∗  is the 
convolution operator. 

From (8), the magnitude response ( )j
oW e ω  can be 

viewed as the sinc functions shifted onto 0ω ω=  and 

0ω ω= − , respectively. When we assume that the filter 
length is long enough to accommodate a single period of the 
primary noise, i.e., 02 /N π ω , the magnitude response of 

the optimum ANC filter ( )j
oW e ω  can be expressed as  

 ( )
( )

( )

0

0

sin
1 2

1sin
2

j
o

N

e
N

W ω

ω ω

ω ω

 −  ⋅
 −  

  (9) 

in the frequency range 0 ω π≤ < . The magnitude response 

of the optimum ANC filter ( )j
oW e ω  is illustrated in Fig.3. 

 
To obtain the stability bound of delay error of secondary 

path model of FBANC ˆ∆ −∆ , put (5) and (9) into (4). 
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In (10), the range of the second term ( )ˆ2sin / 2ω ∆ −∆  is 

divided into two parts as following, 
ˆ

ˆ

0 | | 1 for 0 ˆ3 | |

1 | | 2 for ˆ3 | |

j j

j j

e e

e e

ω ω

ω ω

πω

πω

− ∆ − ∆

− ∆ − ∆

≤ − ≤ ≤ ≤
∆ −∆

< − ≤ <
∆ −∆
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Fig.3. The magnitude response of the optimum ANC filter, 

( )j
oW e ω  for single-tone sinusoidal primary noise. 
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Fig.2. The magnitude of ˆj je eω ω− ∆ − ∆−  illustrated in the 
complex plane. 
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To make the product ˆ| ( ) | | |j j jW e e eω ω ω− ∆ − ∆⋅ −  less than 1.0, 
the magnitude of | ( ) |jW e ω  should be less than 0.5 for the 

range of ( )ˆ/ 3 | |ω π< ∆ −∆ . As shown in Fig. 3, 

| ( ) |jW e ω is less than 0.5 in the range of 

0 0
s sf f

N N
ω δ ω ω δ− ≤ ≤ + . Therefore, the stability condition 

(4) is always satisfied in the range of 

 0
2

ˆ3N
π πω δ + < 

  ∆ − ∆
. (11) 

From (11), the stability bound of ˆ| |∆ −∆ can be obtained as 

 0
2ˆ / 0.6

3 N
π πω ∆ − ∆ < + 

 
. (12) 

Here, the parameter δ is approximately 0.6. 
This simple inequation of the stability bound provides the 

fast computation of parameter bounds among the delay error 
bound, the noise center frequency and the ANC filter length. 
In the next section, the proposed method's validity was 
proved by comparing the results obtained with (12) with the 
simulation results and the original Nyquist stability 
conditions. 

 
4. VERIFICATION WITH SIMULATIONS 

 
In order to verify the stability analysis performed in the 
previous section, the FBANC system is simulated with delay 
error in the estimated secondary path model. For the 
simulation, the sampling frequency is set to 8 kHz and the 
delay length of the secondary path is set to 10 msec, 
equivalently, 80 samples. The ANC filter length N is set to 
400 samples. The tested primary noises are single-tone 
sinusoidal noises whose center frequencies are 20-400 Hz. 

In Fig.4, the stability delay error bounds obtained with the 
proposed methods in (4) and (12) are compared with the 
simulation results and the original Nyquist stability bound. 
The Nyquist stability bound (Blue) is obtained by drawing 
the frequency response of ˆ( )[ ]W z z z−∆ −∆−  repeatedly on the 
complex-plane until it encloses the Nyquist point (-1, 0). 

The proposed stability condition of (12) agrees well with 
both the original Nyquist condition and the simulation 
results showing only little differences less than 0.375 msec, 
equivalently, 3 samples for the primary noises having center 
frequencies over 100 Hz.  

In Fig.4, it is also shown that the delay error bound for 
stability increases as the center frequency of the primary 
noise decreases. For example, the stability bounds of delay 
error are about 15 samples and 7 samples, equivalently, 1.9 
msec and 0.9 msec, respectively, when the FBANC system 
is operated for 100Hz and 200Hz single tone noises. 
 
 

5. CONCLUSIONS 
 
In this paper, the closed-form equation of stability 

conditions of the feedback ANC system is obtained in terms 
of the length of delay error of secondary path, ANC filter 
length and center frequency of primary noise. To obtain the 
equation, a tighter stability condition that the open loop 
frequency response’s polar plot must lie in the unit-circle is 
introduced. The stability bounds of the proposed method 
agrees well with both the original Nyquist condition and the 
simulation results showing less than 0.375 msec difference 
of delay error for the primary noises having center 
frequencies over 100 Hz. The fast computation of parameter 
bounds provided by the proposed approach will be very 
useful for the design and real-time operation of the FBANC 
system. 
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Fig.4. Comparison of stability bounds obtained with different 
methods. Stability bound obtained by Nyquist criterion(Blue), 
Numerically obtained bound of condition (4) (green), Bound 
obtained by equation (12) (red), and Simulation results (stars). 
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