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ABSTRACT
A method for achieving super-resolution of sound field recording
and reproduction is proposed. To obtain driving signals of loud-
speakers for reproduction from received signals of microphones,
sparse signal decomposition makes it possible to reduce spatial
aliasing artifacts when the number of microphones is less than that
of loudspeakers. For more accurate and robust signal decomposi-
tion, we propose three types of group sparse signal model based on
the physical properties of a sound field. In addition, a decomposition
algorithm is derived to address these signal models as an extension
of M-FOCUSS. In the simulation experiments, the accuracy of the
sparse decomposition was significantly improved compared with
that of M-FOCUSS. Furthermore, the accuracy of sound field re-
production using our proposed method was higher than that using
current methods, especially at frequencies above the spatial Nyquist
frequency.

Index Terms— sound field reproduction, sparse signal repre-
sentation, super-resolution, wave field synthesis, wave field recon-
struction filter

1. INTRODUCTION
To achieve high-fidelity audio systems, physical reproduction of a
sound field may be one of the promising techniques. In practical
recording and reproduction systems, sound pressures at multiple po-
sitions in the desired sound field are obtained with microphones, and
then, they are reproduced with loudspeakers in a target area. There-
fore, a method for obtaining driving signals of loudspeakers from the
received signals of microphones is necessary. We define this type of
signal transformation as sound-pressure-to-driving-signal (SP-DS)
conversion. We focus on the SP-DS conversion problem when the
array configuration of the microphones and loudspeakers are planar
or linear.

Wave field synthesis (WFS) [1] is a well-known sound field
synthesis method based on Kirchhoff-Helmholtz or Rayleigh inte-
grals. WFS for a planar or linear loudspeaker array is based on the
Rayleigh integral of the first kind [2]. Because driving signals of
WFS must be equivalent to the distribution of the sound pressure
gradient of a desired sound field, WFS cannot be directly applied for
SP-DS conversion.

On the other hand, the wave field reconstruction (WFR) filtering
method [3] makes SP-DS conversion possible by decomposing the
received sound pressure distribution into spatial Fourier basis func-
tions that correspond to uniformly sampled plane waves. Although
stable and efficient signal conversion can be achieved by using this
representation, artifacts originating from spatial aliasing notably oc-
cur, depending on the microphone and loudspeaker intervals. Under
the significant effect of the spatial aliasing artifacts, listeners may
be unable to clearly localize the reproduced sound images. Further-

more, frequency characteristics of the reproduced sound are greatly
affected, i.e., coloration effect [4].

To reduce the spatial aliasing artifacts, we have proposed an
SP-DS conversion method based on a sparse sound field representa-
tion [5]. This method makes it possible to improve the reproduction
accuracy at frequencies above the spatial Nyquist frequency when
the number of microphones is smaller than that of loudspeakers; this
feature can be regarded as a super-resolution of sound field record-
ing and reproduction. For more accurate and robust decomposition
and higher reproduction accuracy, prior information on the structure
of the recording sound field may be useful. We propose three types
of signal model for group sparse sound field representation that have
advantages for super-resolution SP-DS conversion. In addition, we
propose a group sparse decomposition algorithm by extending the
M-FOCUSS algorithm [6] to address these signal models.

In a prior work, Ahrens and Spors [7] proposed a method of
reducing spatial aliasing artifacts in sound field synthesis. In this
method, the desired sound field is assumed to be known and is syn-
thesized in a limited region; therefore, the recording step is not con-
sidered. Wabnitz et al. [8] proposed an upscaling method for the
Ambisonics order, on the basis of a sparse plane-wave decompo-
sition in a spherical array case. However, the plane-wave decom-
position of the received sound pressure distribution can rarely be
sparse in our planar or linear array case. In [9], a method based on
MAP estimation was proposed. Optimal basis functions represent-
ing a sound field are obtained using prior knowledge of the primary
source locations. Therefore, this method requires these locations in
the SP-DS conversion. Our sparse representation-based algorithm
was initially proposed in [5]. The method proposed in this paper is
aimed at improving that algorithm using the structured sparse signal
models.

2. GENERATIVE MODEL OF SOUND FIELD AND ITS
SPARSE DECOMPOSITION

First, we briefly revisit the generative model of a sound field pro-
posed in [5]. As shown in Fig. 1, a sound field in the recording
area is divided into two regions, internal and external regions of a
closed surface. The internal region is denoted as Ω. Components
approximated as monopole sources are assumed to exist only inside
Ω. When the sound pressure of the temporal frequency ω at the po-
sition r is denoted as p(r), p(r) can be represented as the sum of
inhomogeneous and homogeneous terms, pi(r) and ph(r), as

p(r) = pi(r) + ph(r)

=

∫
r′∈Ω

Q(r′)G(r|r′)dr′ + ph(r), (1)

where Q(r) is the distribution of the monopole source components
inside Ω, and G(r|r′) is three-dimensional free-field Green’s func-
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Fig. 1. Sound field in recording area modeled by sum of monopole
source and plane wave components. Sound pressure is obtained on
receiving plane Γ.

tion. The argument of the temporal frequency ω is omitted for nota-
tional simplicity. The homogeneous term ph(r) can be represented
as the sum of plane waves [10]. We assume that the sound pressure
distribution on the receiving plane Γ is obtained using a microphone
array.

When the region Ω is discretized as a set of grid points, (1) can
be represented in the discrete form as

y = Dx+ h, (2)

where y ∈ CM is the received signals of the microphones, x ∈ CN

is the distribution of the monopole components at the grid points,
h ∈ CM is the homogeneous term of the received signals, D ∈
CM×N is the dictionary matrix of the monopole components, which
has Green’s function between the grid points and the microphones
in each element, and M and N are, respectively, the numbers of
microphones and grid points. Here, N ≫ M is assumed. Since the
monopole source components may exist only at a few locations in
Ω, only a few element of x may have nonzero values. Therefore, the
sparse decomposition algorithm [11] can be applied to decompose y
into x and h. We applied the M-FOCUSS algorithm [6] to achieve
this decomposition in [5].

The driving signals of the loudspeakers correspond to the sound
pressure gradient on Γ when the loudspeakers are also aligned on
a plane [2]. The decomposed components x and h are separately
converted [2, 3, 5], and then the driving signals of the loudspeakers
are obtained as their sum. Since more precise interpolation can be
achieved by using the basis functions that depend on the monopole
source components, spatial aliasing artifacts are reduced when there
are more loudspeakers than microphones [5].

3. STRUCTURED SPARSITY BASED ON PHYSICAL
PROPERTIES

For more precise SP-DS conversion, the decomposition of (2) must
be more accurate and robust. Prior information on the structure of
the sound field, i.e., the structure of the solution vector x, may be
useful for this purpose. We describe three types of group sparse
signal model on the basis of the physical properties of the sound
field.

Model 1: multiple time frames
When multiple time frames of y are available, each x may have
the same sparsity pattern. This model is already used in [5] and
its sparse decomposition is referred to as the multiple measurement
vectors (MMV) problem [6].

We denote the index of the time frame as l ∈ {1, · · · , L}, the
signals of each l as yl ∈ CM , xl ∈ CN , and hl ∈ CM . By concate-

nating them in vectors, we can represent (2) as
y1

y2

...
yL

 =


D 0

D
. . .

0 D



x1

x2

...
xL

+


h1

h2

...
hL

 . (3)

Each xl is assumed to have nonzero values at the same positions.
In the context of the MMV problem, (3) is generally represented

in a matrix form. Several sparse decomposition algorithms for this
representation have been proposed [6, 12–14].
Model 2: temporal frequencies
Many kinds of acoustic source signals have a broad frequency band.
Therefore, each x of multiple frequency bins may have the same
sparsity pattern. Similar to model 1, using the index of the fre-
quency bin l ∈ {1, · · · , L}, we denote the signals of each l as
yl ∈ CM , xl ∈ CN , and hl ∈ CM . Since Green’s function depends
on temporal frequency, the dictionary matrix of each l is denoted as
Dl ∈ CM×N . Therefore, (2) can be represented as

y1

y2

...
yL

 =


D1 0

D2

. . .
0 DL



x1

x2

...
xL

+


h1

h2

...
hL

 (4)

Again, each xl is assumed to have nonzero values at the same posi-
tions. Note that the dictionary matrices in (4) are different in each
group whereas those in (3) are the same.
Model 3: image sources and multipole components
Signals obtained in an ordinary room have reflections from walls in
addition to direct sound. This phenomenon leads to the presence
of monopole source components at the reflective image source loca-
tions [15]. As another example, multipole source components, such
as a dipole and a quadrupole, may exist at the same location as the
monopole source components [10]. These properties can be repre-
sented by the same group sparse signal model.

Using the index of the image sources l ∈ {1, · · · , L}, we denote
the signal of each l as xl ∈ CN . Green’s function between the l-
th image source location and the microphones is denoted as Dl ∈
CM×N . Therefore, (2) can be represented as

y =
[
D1,D2, · · · ,DL

]

x1

x2

...
xL

+ h. (5)

Again, each xl is assumed to have nonzero values at the same po-
sitions. Note that the length of y is degenerated to M . Therefore,
the structure of the dictionary matrix is different from that in (3) and
(4). In the case of image source components, room geometry must
be known to design Dl. In the case of multipole components, Dl

becomes Green’s function of each multipole.
Combinatorial model
Models 1, 2, and 3 can be combined. For example, in the case of
combination of two groups, each xl in (5) is replaced by the solution
vector in (3) to combine models 1 and 3. The dictionary matrix must
be designed accordingly. To combine I groups, the sets of indexes of
the groups are denoted as G1, · · · ,GI , and the index of each group
is denoted as li ∈ {1, · · · , |Gi|}. The signal vectors and dictionary
matrix are denoted as x̃ ∈ CN|G1|···|GI |, ỹ, h̃, and D̃, respectively.
These can be related as

ỹ = D̃x̃+ h̃. (6)
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Algorithm 1 Proposed group sparse decomposition algorithm

Initialize x̃(0), t = 1
while loop ̸= 0 do

w(t) ← [p−1/2∥x̃[1](t−1)∥1−p/2
2 , · · · , p−1/2∥x̃[N ](t−1)∥1−p/2

2 ]

W̃(t) ← diag
(
w(t), · · · ,w(t)

)
A(t) ← D̃W̃(t)

x̃(t) ← W̃(t)A(t)H(A(t)A(t)H + λI)−1ỹ
t← t+ 1
if stopping condition is satisfied then

loop = 0
end if

end while

Each group is nested in the solution vector x̃. The sizes of ỹ, h̃, and
D̃ depend on the types of combined models.

In the context of the sound source localization [16–18], several
works using combinatorial models 1 and 2 can be found. Model 3
plays an important role in sound field recording and reproduction be-
cause each basis function must be a solution of the wave equation to
enable conversion from the decomposed signals to the driving sig-
nals of the loudspeakers. Helwani et al. [19] used model 2 and 3 for
multichannel adaptive filtering.

4. GROUP SPARSE DECOMPOSITION ALGORITHM
To solve group sparse decomposition (6), we derive an extended

algorithm of M-FOCUSS [6, 14]. We define a groupwise diversity
measure of x̃ as

Jp,q(x̃) =

N∑
n=1

∥x̃[n]∥pq

=

N∑
n=1

 ∑
l1∈G1

· · ·
∑

lI∈GI

|xn,l1,··· ,lI |
q

p/q

, (7)

where 0 ≤ p ≤ 1 and q ≥ 1, x̃[n] is the n-th element of each
group, and xn,l1,··· ,lI is the n-th element of the group l1, · · · , lI .
The optimization criteria can be described as

min
x̃

1

2
∥ỹ − D̃x̃∥22 + λJp,q (x̃) , (8)

where λ is a parameter that balances the approximation error and the
sparsity-inducing penalty Jp,q(x̃).

Similar to M-FOCUSS, the case where 0 < p ≤ 1 and q = 2 is
addressed. The partial derivative of Jp,2(x̃) with respect to the entry
xn′,l′1,··· ,l

′
I

is derived as

∂Jp,2

∂x∗
n′,l′1,··· ,l

′
I

=
∂

∂x∗
n′,l′1,··· ,l

′
I

N∑
n=1

 ∑
l1∈G1

· · ·
∑

lI∈GI

|xn,l1,··· ,lI |
2

p/2

= p

 ∑
l1∈G1

· · ·
∑

lI∈GI

∣∣xn′,l1,··· ,lI

∣∣2p/2−1

· xn′,l′1,··· ,l
′
I

= p
∥∥x̃[n′]

∥∥p−2

2
xn′,l′1,··· ,l

′
I
. (9)

We define a vector p ∈ RN as

p =
[
p∥x̃[1]∥p−2

2 , · · · , p∥x̃[N ]∥p−2
2

]
, (10)

(a) Recording area (b) Target area

Fig. 2. Simulation setup

and a diagonal matrix P̃ ∈ RN|G1|···|GI |×N|G1|···|GI | as

P̃ = diag(p, · · · ,p). (11)

The gradient of the objective function (8) can be derived as

−DH(ỹ − D̃x̃) + λP̃x̃. (12)

By defining a vector,

w = [p−1/2∥x̃[1]∥1−p/2
2 , · · · , p−1/2∥x̃[N ]∥1−p/2

2 ], (13)

and a diagonal matrix W̃ accordingly, i.e., W̃−2 = P̃, the necessary
optimality condition can be written as(

(D̃W̃)H(D̃W̃) + λI
)
W̃−1x̃ = (D̃W̃)H ỹ. (14)

Finally, the following iterative scheme can be derived:

x̃(t+1) =

W̃(t)
(
(D̃W̃(t))H(D̃W̃(t)) + λI

)−1

(D̃W̃(t))H ỹ, (15)

where (·)(t) denotes the iteration index.
The proposed decomposition algorithm is summarized as Algo-

rithm 1. As in the method presented in [5], the decomposed signals
are separately converted into the driving signals of the loudspeakers.

5. EXPERIMENTS
Numerical simulations were conducted to evaluate the proposed
method. First, sparse decomposition performances of the proposed
decomposition algorithm and M-FOCUSS are compared. Second,
we demonstrate a super-resolution of sound field recording and
reproduction using the proposed method. Although the proposed
method was derived for the case of planar arrays, we assumed that
these arrays are linear in the experiments. The proposed method can
be straightforwardly extended to the linear case.

5.1. Sparse decomposition performance
We focused on a signal model that combines models 1 and 3 in the
experiments. Specifically, a group sparsity derived from multiple
time frames and reflective image sources was considered. As shown
in Fig. 2a, a half-space of a room was set as the recording area.
The room size was 3.84×7.0×3.0 m3. The origin of the coordinate
system was set at the center of the room. A linear microphone array
was set along the x-axis with its center at the origin. The number
of microphones was 32 and they were set at intervals of 12 cm. The
directivity of the microphones was assumed to be omnidirectional.
The room reverberation was simulated by the image method [15].
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Fig. 3. Results of sparse decomposition performance. Fmsr and
MSE were averaged over 100 trials at each frequency.

We assumed that only the three walls at y = ±1.92 m and x =
−3.5 m reflect sound waves, and their reflection coefficients were
set as 0.4.

The two-dimensional region Ω was set to be 11.5×7.0 m2 in size
on the x-y-plane at z = 0 (shaded region in Fig. 2a); therefore, Ω
included five image source areas. The number of grid points was 38
(x) × 17 (y) inside the room, i.e., the direct source area, and they
were set at intervals of 0.1 m for x and 0.2 m for y. The center of
the grid points was at (0.0,−1.6, 0.0) m. In the image source areas,
these grid points were aligned at the corresponding image source
locations. The total number of grid points was 114 (x) × 34 (y).

A single sound source location was randomly chosen from the
grid points in the direct source area. The source was assumed to have
monopole characteristics. The source signal was a single-frequency
sinusoidal wave. The amplitude of the source signal was generated
by a complex Gaussian distribution with a mean of 1.0 and a variance
of 0.5 at each time frame.

In both the proposed method and M-FOCUSS, the parameter p
in the penalty term Jp,2(x̃) was set as p = 0.8, and λ in (8) was set
as 1.0 × 10−3. The number of time frames of the observed signal
was 16. The maximum iteration number of both methods was 100.

To evaluate the performance of sparse decomposition, we de-
fined F -measure (Fmsr) and mean square error (MSE) [14]. An op-
erator supp(·) extracts a set of indexes such that the amplitude of
each element of the solution vector x̃ is larger than a threshold value
µ, as

supp (x̃) = {n ∈ {1, · · · , N |G1||G2|} | |xn| > µ} , (16)

where µ is a threshold value that was set as 0.32. Fmsr is defined as

Fmsr = 2
|supp (x̃est) ∩ supp (x̃true) |
|supp (x̃est)|+ |supp (x̃true)|

, (17)

where x̃est and x̃true are the estimated and true solution vectors,
respectively. Therefore, Fmsr is equal to 1 when the set of activated
indexes of these vectors are exactly the same. MSE is defined as the
squared ℓ2-norm of the error of the solution vector.

MSE = 10 log10 ∥x̃true − x̃est∥22 (18)

These values were averaged over 100 trials.
Figure 3 shows plots of the results of Fmsr and MSE when the

frequency of the source signal was in the range from 100 Hz to
3500 Hz. Although MSE was almost the same in the two methods,
Fmsr was significantly improved when using the proposed method.

Fig. 4. Relationship between frequency and SDR

Model 3 makes it possible to accurately detect small amplitudes of
reflective image sources. By introducing model 2, the variation in
these values at each frequency may be reduced.

5.2. Reproduction performance
To evaluate the reproduction accuracy, the sound field captured as
described in the previous section was reproduced using a linear loud-
speaker array in the free field (Fig. 2b). In addition to the proposed
method (Proposed) and the method proposed in [5] (M-FOCUSS),
the WFR filtering method (WFR) [3] was also compared.

The linear loudspeaker array was located along the x-axis, as
shown in Fig. 2b. The number of loudspeakers was 64 and they were
set at intervals of 6 cm. To eliminate an artifact of faster ampli-
tude decay [3], the loudspeakers were assumed to have line source
characteristics. The sound pressure distribution were simulated in a
3.6×2.9 m2 region at intervals of 1.5 cm on the x-y-plane at z = 0.
The center of the simulated region was at (0.0, 1.95, 0.0) m. The
amplitudes were normalized using the average squared amplitude in
the simulated region. In this experiment, the single sound source
location was fixed at (−0.65,−1.2, 0.0) m in the recording area.
The general reproduction accuracy was evaluated using the signal-
to-distortion ratio (SDR) [3, 5].

Figure 4 shows the relationship between SDRs and the fre-
quency of the source signal. The spatial Nyquist frequency deter-
mined from the intervals between the microphones is indicated by
the dashed line. The SDRs of Proposed and M-FOCUSS were sig-
nificantly higher than that of WFR at frequencies above the spatial
Nyquist frequency. Moreover, the SDR of Proposed was higher
than that of M-FOCUSS. By improving Fmsr, we also improved the
reproduction accuracy, especially at frequencies above the spatial
Nyquist frequency.

6. CONCLUSION
An SP-DS conversion method for super-resolution of sound field
recording and reproduction was proposed. Three types of group
sparse signal model were represented on the basis of the physical
properties of the sound field. In addition, a sparse decomposition al-
gorithm was derived to address these signal models as an extension
of M-FOCUSS. Using these group sparse signal models, we signif-
icantly improved F -measure in the decomposition stage compared
with the case of using M-FOCUSS. Furthermore, the reproduction
accuracy was higher than that of current methods, especially at fre-
quencies above the spatial Nyquist frequency.
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