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ABSTRACT

The increasing popularity of miniature devices and loud-
speakers has fuelled research in non-linear acoustic echo
cancellation (NAEC). This paper reports a novel approach to
NAEC based on empirical mode decomposition (EMD), a re-
cently developed technique in non-linear and non-stationary
signal analysis. EMD decomposes any signal into a finite
number of time varying sub-band signals termed intrinsic
mode functions (IMFs). The new approach to NAEC pre-
sented here incorporates this multi-resolution analysis with
conventional power filtering to estimate non-linear echo in
each IMF. Comparative experiments with a competitive base-
line approach to NAEC based on pure power filtering show
that the new EMD approach achieves greater non-linear echo
reduction and faster convergence.

Index Terms— Echo cancellation, non-linear modelling,
empirical mode decomposition (EMD), intrinsic mode func-
tions (IMF)

1. INTRODUCTION

Acoustic echo cancellation (AEC) plays a vital role in ensur-
ing satisfactory speech quality in many applications, for ex-
ample hands-free telephony and teleconferencing. The use
of miniature transducers in such applications generally in-
troduces non-linearities in the acoustic path which typically
degrade the performance of AEC algorithms. Consequently,
non-linear acoustic echo cancellation (NAEC) is today an ac-
tive research area.

Loudspeaker saturation is generally assumed to be the
major source of memory-less, non-linearities [1, 2, 3, 4, 5].
Popular, time-domain solutions to NAEC include cascaded
and parallel approaches. In the cascaded approach, non-
linearities and the echo path are estimated with a cascaded,
adaptive non-linear pre-processor and a finite impulse re-
sponse (FIR) filter. With the parallel approach, estimation
is generally performed with a multi-channel adaptive filter
structure.

Both cascaded and parallel approaches have their draw-
backs. The cascaded approach requires pre-processor and
FIR filter adaptation using a single joint error signal e (n).
As a result the convergence of both filters is interdependent,
which leads to possible errors. The parallel approach requires
redundant echo path estimation with each sub-filter, which
generally leads to slow convergence [3]. Frequency domain
solutions were proposed to address these drawbacks. A dis-
crete Fourier transform (DFT) based approach is proposed
in [6] and a sub-band domain approach is proposed in [7].
The use of a non-linear transformation based on a raised co-
sine function for non-linear echo reduction is proposed in [8].
Approaches to NAEC based on kernel adaptive filtering are
proposed in [9, 10]. Neural network solutions are also re-
ported in [11]. Despite this considerable volume of research,
the current state of the art solutions generally accomplish only
modest reductions in non-linear echo. This observation has
motivated our pursuit of entirely new solutions to NAEC.

One of the new approaches we are exploring involves
empirical mode decomposition (EMD). EMD is a recent
adaptive data analysis technique suited to non-linear and non-
stationary signals [12]. Applications in speech and audio
processing are widely reported and include speech enhance-
ment/noise cancellation [13, 14, 15], source separation [16],
voice activity detection [17] and pitch estimation [18]. An
EMD-based, sub-band approach to linear AEC is reported
in [19]. The suitability of EMD to decompose any signal
completely without losing any information has prompted us
to investigate its application to NAEC.

This paper reports the first EMD-based approach to
NAEC. The work aims to demonstrate the application of
EMD in the time domain as a potential solution to NAEC.
The approach is based on the decomposition of a full-band
microphone signal into a small, finite number of time-varying
sub-band signals, termed intrinsic mode functions (IMFs).
NAEC is then accomplished through the application of con-
ventional, adaptive power filtering to each IMF using a full-
band reference signal. The new approach is shown to outper-
form a baseline power filter approach in terms of better echo
reduction and faster convergence.
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2. EMPIRICAL MODE DECOMPOSITION

EMD is a recent approach to non-linear and non-stationary
signal analysis [12, 20]. EMD decomposes any signal into
a finite number of time varying sub-band signals referred to
as intrinsic mode functions (IMFs). IMFs are not predefined,
as is the case with the Fourier and wavelet transforms, but
are adaptively extracted from the input data and accordingly
serve as adaptive basis functions.

The EMD algorithm examines the input signal between
two consecutive extrema and iteratively extracts the highest
frequency components between these two points [20]. The
remaining local, low frequency components can then be ex-
tracted by consecutive iterations. This procedure identifies
the different oscillatory modes in the input. IMFs are sym-
metric with respect to a local zero-mean and the number of
zero crossings and extrema differ at most by one [12].

As described in [12, 14], a signal y (n) is decomposed into
a set of M IMFs according to the following procedure known
as sifting:

1. Identify all extrema (local maxima and minima) of the
signal, y (n).

2. Obtain the upper envelope emax (n) and the lower en-
velope emin (n) by interpolating the local maxima and
minima, respectively.

3. Compute the local mean m (n) = emin(n)+emax(n)
2 .

4. Extract the detail signal d (n) = y (n)−m (n).

5. d (n) can be considered as an IMF if it has zero mean
and all its local maxima and minima are positive and
negative respectively. If not, steps 1–4 are repeated
with d (n) in place of y (n).

6. For the next IMF, the entire process is applied to the
residual r1 (n) = y (n)− d (n).

7. Iterate on the residual until the number of extrema in
the residual is smaller than two or until a maximum
number of iterations is reached. Assign the last residual
as r (n).

The above sifting process decomposes any signal y(n)
into a set of frequency ordered IMF components yj (n) ; j =
1, · · · ,M . Each successive IMF contains successively lower
frequency components. Together they represent y(n) accord-
ing to:

y (n) =

M∑
j=1

yj (n) + r (n) (1)

Full details of EMD are available in [12, 20]. While there
is an on-line EMD algorithm [21], the work reported here was
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Fig. 1. An illustration of EMD. Illustrated is a clean speech
signal (top) and the first 3 IMFs.

performed with an ’off-line’ implementation, i.e. by applica-
tion of EMD to entire signals. This was deliberate in order to
demonstrate the application of EMD to non-linear echo can-
cellation while avoiding additional problems inherent to on-
line processing [21].

An example of EMD is illustrated in Fig. 1. Illustrated is a
clean speech signal sampled at 8kHz and the first three IMFs.
The spectral content of consecutive IMFs corresponds to de-
creasing frequency. The first few IMFs correspond to a band-
width of approximately 1kHz to 4kHz, the bandwidth which
typically contains the majority of the higher-order non-linear
echo components. Other IMFs are predominant with other
echo components. This data-adaptive technique thus decom-
poses a non-linear input into a set of IMFs which can fur-
ther be characterised as either non-linear-dominant or linear-
dominant. By taking advantage of this principle, we propose
a novel approach to NAEC based on EMD.

3. EMD FOR NAEC

The new EMD-based NAEC scheme illustrated in Fig. 2 is
essentially standard except for EMD decomposition, resyn-
thesis and the use of multiple filter chambers. The down-
link/reference signal is denoted by x (n), the loudspeaker out-
put signal by xout (n) and the uplink/microphone output sig-
nal by y (n). In this first attempt to employ EMD for NAEC
we suppose no near-end speech and no background noise.
The uplink signal thus contains echo alone.

The microphone output y (n) is decomposed by EMD
into M IMFs according to the approach described in Sec-
tion 2. Each IMF is then adaptively estimated from the
downlink/reference signal x (n) by one of M filter chambers
(FCs). Each FC contains the P th order conventional power
filter model [1] illustrated in Fig. 3. The power filter model
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Fig. 2. Structure of EMD based NAEC.

is an efficient approach to the identification of non-linear
acoustic echo paths. The sub-filters adaptively estimate the
acoustic channel and loudspeaker impulse response, collec-
tively referred to as the loudspeaker enclosure microphone
system (LEMS) illustrated in Fig. 2.

Decomposition of the microphone signal y (n) produces
M IMF signals yj ; j = 1, · · · ,M where each IMF represents
a distinct frequency range. Accordingly, each corresponding
FC requires fewer filter taps than would otherwise be required
in the case of a full-band signal. The output of each FC ŷj(n)
is subtracted from the corresponding IMF yj(n) thereby gen-
erating individual error signals ej (n). Each error signal is
used in the conventional manner to update FC sub-filter co-
efficients hp (n) ; p = 1, · · · , P . Finally, the individual error
signals are summed together to reconstruct the full-band error
signal:

e(n) =

M∑
j=1

ej (n) + r (n) (2)

3.1. Echo generation

In this work, it is assumed that the loudspeaker is a memory-
less non-linear system and that it is the only source of non-
linearity. For experimentation purposes, microphone output
signals with non-linear echo are generated artificially accord-
ing to:

y (n) =

P∑
p=1

L−1∑
i=0

xp(n− i)hp(i) (3)

where x (n) is the downlink/reference signal and hp(n) is the
L-tap linear filter in the P th channel. It represents the com-
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Fig. 3. Block diagram of a multi-channel, P th order power
filter.

bination of the loudspeaker response hpL
(n) and the room

impulse response hrir (n):

hp (n) = hpL
(n) ∗ hrir (n) (4)

Here, hpL
(n) is the P th order simplified, diagonal (one-

dimensional) loudspeaker Volterra kernel. It is measured em-
pirically as explained in our previous work [22, 23] using the
non-linear system identification method reported in [24, 25].

3.2. Adaptive filtering

EMD produces a total of M IMF signals yj ; j = 1, · · · ,M .
Corresponding error signals ej ; j = 1, · · · ,M are thus ex-
pressed by:

ej (n) = yj (n)− ŷj (n)

ej (n) = yj (n)−
P∑

p=1

ĥT
p (n)xp(n) (5)

where ĥp (n) is the estimated sub-filter vector of length Np,
xp(n) = [xp(n), . . . , xp(n − Np + 1)]T , and ŷj (n) =∑P

p=1 ĥ
T
p (n)xp(n) is the output of the jth FC. Due to its

simplicity we used a normalised least mean square (NLMS)
adaptive filtering algorithm within each FC. The NLMS al-
gorithm for sub-filter ĥp (n) is derived using an approach
similar to that given in [5]. Updates are applied in the usual
manner according to:

ĥp (n+ 1) = ĥp (n) +
µp

‖xp‖22
xpej (n) (6)

4. EXPERIMENTAL WORK

The following reports a performance comparison of the new
EMD-based approach to NAEC to a baseline power filter-
ing approach. All experiments were conducted with speech
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Fig. 4. A performance comparison in terms of ERLE for the
new EMD-based approach to NAEC and a baseline power fil-
ter approach.

signals contaminated artificially according to an empirically
measured loudspeaker non-linearity function. Performance
is assessed in terms of the echo return loss enhancement
(ERLE).

4.1. Experimental setup

Experiments were performed with diagonal (one-dimensional)
loudspeaker Volterra kernels hpL

(n) for values of p ≤ 5 and
with 32 taps in all cases. The acoustic channel was modelled
with a fixed 256-tap room impulse response (RIR) hrir (n)
selected from the Aachen RIR database [26]. All experiments
were performed with a clean speech downlink/reference sig-
nal x (n) of approximately 10 seconds duration with a sam-
pling frequency of 8kHz. A change in the acoustic channel is
introduced after approximately 5 seconds simply by delaying
the RIR by 2.5 ms. This is done to compare the dynamic
re-convergence performance of each algorithm. The P = 5
sub-filters, each of 287 taps, are generated according to Eq. 4
before the microphone output/non-linear echo signal y (n) is
then generated according to Eq. 3.

We used the EMD routines available in [27] for decompo-
sition into M = 10 IMFs1. The order of the power filters can
be adjusted individually in each FC according to the spectral
properties of the corresponding IMF. Over-modelling the or-
der of power-filters in the FCs increases computational com-
plexity and the unnecessary degrees of freedom lead to noisy

1M varies for each speech signal; it depends on the stopping criteria used
in the process outlined in Section 2. It is not the purpose of this paper to
address such issues which have been analysed in detail elsewhere [12, 27].
Accordingly, the 10th IMF is equivalent to the sum of r (n) and all higher-
order IMFs.

estimates ŷj(n). For the test whose results are illustrated in
Fig. 4, the first 4 FCs each contain 5 adaptive sub-filters, the
5th FC has only 4 adaptive sub-filters whereas the 6th and
7th FCs have only 3. FCs 8–10 consist of a single, 287-tap
linear transversal filter. For all multi-channel FCs, the first
sub-filter, which corresponds to the linear system response,
has 128 taps. All other sub-filters have 32 taps.

Finally, the baseline power filter approach has P = 5 sub-
filters, each with 287 taps. Neither the EMD-based nor power
filter approach uses orthogonalization since; with the number
of sub-filter taps used in these experiments, it does not im-
prove performance [3].

4.2. Experimental results

ERLE results for the EMD and the baseline power filter ap-
proaches to NAEC are illustrated in Fig. 4 for a common test
speech signal. The EMD approach is shown to outperform
the baseline system; it attains a higher level of ERLE, around
8-10 dB more than the baseline. The use of different orders
of power filters provides a convenient means of improving
NAEC performance, thus minimising gradient noise due to
over-modelling.

Fig. 4 also illustrates the response of each approach upon
initialisation and to a discrete change in the acoustic echo path
which occurs at approximately 5 seconds. In both cases the
EMD approach is shown to converge more rapidly than the
baseline system. This is due to the lower spectral dynamic
range in each IMF compared to the full-band signal in the
baseline approach.

While the proposed EMD-based NAEC not only deliv-
ers greater average echo attenuation, faster convergence and
thus better performance in the case of a dynamically chang-
ing acoustic path, it is not without cost. This entails increased
computational complexity, principally due to the EMD de-
composition and the use of multiple FCs. While there is scope
to reduce the computational load via further optimisation, the
current system is approximately 1.8-times more demanding
in terms of computation.

5. CONCLUSIONS

This paper reports the first application of empirical mode
decomposition (EMD) to non-linear acoustic echo cancella-
tion (NAEC). The EMD solution entails the decomposition
of the microphone signal into intrinsic mode functions and
their utilisation in otherwise-conventional echo cancellation
using adaptive filtering. When compared to the power filter
baseline system, experimental results demonstrate improved
NAEC performance in terms of greater echo reduction and
faster convergence. The proposed structure is also more ro-
bust to dynamic changes in the acoustic channel. While a
modest increase in computational complexity is a drawback,
there is scope to reduce this through further optimisation.
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