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This paper extends the existing work on the root locus
analysis of FxLMS algorithm by considering secondary path
modeling errors. Rules for sketching FxLMS root locus are
set out. An analytic convergence condition is then derived
from the root locus plot. A deliberately-misaligned secondary
path model is proposed to be used as the data preparation filter
in the FxLMS algorithm. The proposed filter increases the
computational efficiency of the algorithm, without changing
its convergence behavior. The theoretical results are verified
in practice by busing an experimental system.
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1. INTRODUCTION

Filtered-x Least Mean Square (FxLMS) [1, 2] is widely used
in various adaptive signal processing applications, such as
Active Noise Control (ANC) [3, 4]. In these applications,
there is a primary signal that propagates away from an un-
known source to an error point through an unknown primary
path. Also, there is a secondary (or control) signal that prop-
agates away from a control source to the error point through
a Secondary Path (SP). In this case, the signal at the error
point (error signal) is the combination of the primary and sec-
ondary signals. FxLMS is responsible for the generation of
the secondary signal to form a desired error signal. For this
purpose, it requires a coherent reference signal and the error
signal. Also, it requires a Secondary Path Model (SPM,) for
preparing (or ’filtering’) training data [5].

FxLMS is a simple algorithm but modeling its behavior
is mathematically complicated. Hence, the existing models
use various simplifying assumptions regarding the primary
signal, SP or SPM [6–9]. For example, the authors have re-
cently proposed a new framework for the analysis and design
of FxLMS-based ANC systems by using Root Locus theory
but they had to simplify their analysis by assuming an ex-
act SPM [10, 11]. The main motivation for the research con-
ducted for this paper is to include SPM errors in the FxLMS
root locus analysis. The proposed analysis has the potential of
various interesting investigations, two of which are concerned
by this paper. First, influence of SPM errors on the algorithm
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Fig. 1: General block diagram of FxLMS-based ANC

convergence is investigated. Second, misaligned SPMs that
would increase efficiency of the algorithm are investigated.

2. FXLMS ADAPTATION PROCESS

Fig. 1 shows general diagram of FxLMS-based ANC. Noise
at the error point, d (n) is not measurable due to the existence
of the control signal. A coherent reference signal, x (n) can
be measured close to the noise source. d (n) is assumed to be
the response of the primary path, P , to x (n). ANC generates
the control signal, y (n), as the response of an adaptive filter,
W , to x (n). y (n) propagates through the secondary path, S,
to reach the error point, where it combines with d (n) to form
the residual noise e (n). The FxLMS updates the L×1 weight
vector of W , w (n), by

w (n+ 1) = w (n) + µxf̂ (n) e (n) (1)

Here, µ is the step-size, e (n) is picked up by a microphone
and the filtered-reference vector, xf̂ (n) can be computed by

xf̂ (n) =
∑

q ŝqx (n− q) (2)

where, x (n) is a tap vector of x (n), {ŝq}Q−1
0 is an esti-

mate of SP coefficients {sq}Q−1
0 . In this paper, {sq}Q−1

0 and
{ŝq}Q−1

0 are referred to as SP and SPM. From the diagram,

e (n) = d (n)−
∑

qsqw
T (n− q) x (n− q) (3)
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Let us define z (n)=FTx (n) and c (n)=FT [w (n)-wo],
where wo is the optimal weight vector and F is the modal
matrix obtained by the diagonalization of R=E{xxT } as
R=FΛFT . Eqs. (1-3) can be re-expressed by

c (n+ 1) = c (n) + µ{
∑

q ŝqz (n− q)}e (n) (4)

e (n) = eo (n) +
∑

qsqz
T (n− q) c (n− q) (5)

where eo (n) is the optimal value of e (n), that can be calcu-
lated by substituting w=wo into Eq. (3). Substituting Eq. (5)
into (4) results in

c (n+ 1) = c (n) + µ
∑

q ŝqz (n− q) eo (n) (6)

+µ
∑

q ŝqsqz (n− q) zT (n− q) c (n− q)

From Eq. (6), the statistical expectation of c (n), shown by
c̄ (n) or E {c (n)}, can be formulated by

c̄ (n+ 1) = c̄ (n) + µ
∑

q ŝqE {z (n− q) eo (n)} (7)

+µ
∑

q ŝqsqE
{
z (n− q) zT (n− q) c (n− q)

}
Noise is a zero-mean stationary process and independent from
the optimal output; hence, {z (n− q) eo (n)}=0. Thus,

c̄ (n+ 1) = c̄ (n) + µ
∑

q ŝqsqΛc̄ (n− q) (8)

where Λ=E
{
zzT

}
is a diagonal matrix with positive real

eigenvalues λ1, λ2,.... and λL. The characteristic equations
of Eq. (8) is formulated by

1 + λlµ

∑
q ŝqsqz

Q−1−q

zQ − zQ−1︸ ︷︷ ︸
ĤFxLMS(z)

= 0 (9)

Eq. (9) is in the standard form of 1+βH (z)=0. H (z) is
called the open loop transfer function and its zeros and roots
are called open loop zeros and poles [12].

3. FXLMS ROOT LOCUS ANALYSIS

Root locus analysis is a graphical method for examining how
the poles of a system change with variation of a certain pa-
rameter [12]. Root locus plots (RL) can be sketched by fol-
lowing a set of rules. Recently, this technique is used to ex-
amine the poles of the FxLMS algorithm when µ varies; how-
ever, a simplified case with an exact SPM (ŝq=sq) is consid-
ered [10,11]. In the following, the important rules for sketch-
ingRL of the FxLMS algorithm (R̂LFxLMS) for an arbitrary
SPM (ŝq 6= sq) is introduced. Fig. 2 shows three distinct ex-
amples for better understanding of these rules.
Rule 1 - Number of Branches: RL has as many branches as
there are open loop poles [12]. ĤFxLMS has Q poles; there-
fore, R̂LFxLMS has Q branches, shown by {B̂q}Q1 .

Rule 2 - Starting Points: RL begins at the open loop poles
[12]. ĤFxLMS has a single pole at z=1 and a repeated pole
(order Q-1) at z=0; therefore, R̂LFxLMS begins at either z=1
or z=0. Let us assume that B̂1 begins at z=1 and B̂2,...,B̂Q

begin at the repeated pole z=0.
Rule 3 - Ending Points: Branches of RL end at either the
the open loop zeros or go to infinity by approaching asymp-
tote lines. The asymptotes intersect at the certain location on
the real axis and radiate out with a certain angle [12].
Rule 4 - Real-axis Sections: RL lies on the real axis to the
left of an odd number of open loop poles and zeroes [12].
ĤFxLMS has a single pole at z = 1 and a repeated pole (or-
der Q-1) at z=0. The location of the zeros of ĤFxLMS are
unknown; therefore, determining all of the real-axis sections
of R̂LFxLMS is not possible. However, the real-axis sections
around the critical point z=1 can be determined. The zeros of
ĤFxLMS are either complex conjugate or real. Since com-
plex conjugate zeros are in pairs, they don’t affect on the real-
axis sections of the root locus. If there is an even number of
real zeros to the right of z = 1; then R̂LFxLMS lies on the
real-axis in a left neighborhood of z=1. This neighborhood is
limited by the largest real zero between z=0 and z=1 (if there
is any) or by the existing repeated pole at z=0 (if there is no
zero between 0 and 1). In this case, R̂LFxLMS does not lie on
the real axis in a right neighborhood of z=1. Figs. 2a and 2b
show two examples for this case. If there is an odd number of
real zeros to the right of z=1, R̂LFxLMS lies on the real-axis
in a right neighborhood of z=1. This neighborhood is limited
by the smallest real zero located behind z=1. In this case,
R̂LFxLMS does not lie on a left neighborhood of z=1. Fig. 2c
shows an example for this case.
Rule 5 - Breakaway Points: The breakaway points are the
roots of ∂

∂z
1

H(z)=0 [12]. R̂LFxLMS might have various break-
away points, which do not necessarily affect the FxLMS con-
vergence. Based on the same logic used in [10], the break-
away point located near z=1 (if any) is located at

xB =
D̂eq

D̂eq+1
(10)

where D̂eq is given by

D̂eq =

∑
qsq ŝq∑
sq ŝq

(11)

For an exact SPM (ŝq=sq), D̂eq (shown by Deq) is the center
of gravity of SP impulse response energy:

Deq =

∑
qs2q∑
s2q

(12)

4. THEORETICAL RESULTS AND DISCUSSION

4.1. Convergence Condition

FxLMS algorithm converges as long as all of its Q poles
are located inside the unit circle. In R̂LFxLMS, the poles

610



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Im
ag

in
ar

y

Real

z−plane

B̂1

B̂2

B̂3

B̂4

B̂5

B̂6

B̂7
B̂8

xB

(a) Case 1: exact SPM
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Fig. 2: Root locus plots of the FxLMS algorithm for SP and exact SPM: {sq}={0, 0, 0, 1, 1, 0.8, 0.5,−0.2}, proposed SPM:
{ŝq}={0, 0, 0, 0, 1, 0, 0, 0} and the SPM used in case 3 is {ŝq}={0, 0, 0,−1,−1, 0.8, 0, 0}

are located at the starting points when µ=0. They move on
R̂LFxLMS when µ varies. All the poles are located either
at 0 or 1 when µ=0 (Rule 2). The poles moving on B̂2,...,B̂Q

(with starting point z=0) move toward their (unknown) ending
points, so they may intersect the unit circle when µ increases.
However, it can be assured that they are all located inside the
unit circle as long as µ is behind a certain upper-bound µmax

(because they are at the center of the unit circle when µ=0).
This behaviour can be seen in the three plots of Fig. 2. There
is another pole that moves on B̂1 (with starting point z=1). B̂1

lies on real-axis in either a right or left neighborhood of z=1
(Rule #4). If B̂1lies on a left neighberhood of z=1, then the
poles moving on it can remain inside the unit circle as long
as µ does not exceed a certain level; therfore the algorithm
converges conditionally. Figs. 2a and 2b show two example
for the occurance of this case. If B̂1 lies on a right neighbor-
hood of z=1, then the pole, moving on it, gets outside the unit
circle immediately after increasing µ from zero. It means that
there is no µmax behind which the algorithm converges. Fig.
2c shows an example for the occurance of this case.

From the above discussion, FxLMS converges only if B̂1

lies on a left neighborhood of z=1. This occurs when there
is an odd number of zeros to the right of z=1 (Rule #4). One
special case occurs when there is no zeros to the right of the
imaginary axis. The occurrence of this case requires all the
numerator coefficients of ĤFxLMS to be positive:

ŝqsq ≥ 0 (13)

This condition is very resterective but it can assure the conver-
gence of the algorithm when the actual SP coefficients {sq}
change during the operation of the algorithm. Morgan de-
rived a similar condition for a very simplified case, when SP
and SPM are pure-delay systems [2]. In this case, there are
only one non-zero sq and one non-zero ŝq . The convergence
condition given in Eq. (13) is derived for a general SP and

SPM but it includes Morgan’s convergence condition.

4.2. Deliberately Misaligned Secondary Path Models

Let us consider the following SPM:

ŝq =

{
sign (sq) srms, q = [Deq]

0, else
(14)

where sign (.) and [.] denotes the sign and nearest integer
functions, srms denotes the root-mean-square of {sq} and
Deq is the center of gravity of SP, given in Eq. (12). The
proposed SPM has only one non-zero coefficient located at
Deq . More precisely, the energy of the proposed SPM equals
to that of the actual SP but it is only concentrated at its center
of gravity. The proposed SPM satisfies the convergence con-
dition given in Eq. (13). Influences of the proposed SPM on
the convergence behavior and computational efficiency of the
FxLMS algorithm are investigated in the following.

4.2.1. Convergence Behavior

In the previous section, it is shown that the convergence of the
FxLMS algorithm can be assured when ĤFxLMS has no ze-
ros to the right of the imaginary axis. In this case, R̂LFxLMS

lies on the real-axis interval from 0 to 1 (Rule #4). Both of
z=0 and z=1 are starting points of the root locus; therefore,
there should be a breakaway point in this interval. The loca-
tion of this point is given in Eq. (10). In this situation, the
pole moving on B̂1 begins at z=1 (for µ=0) and moves on the
real-axis when µ increases. It continues moving on the real
axis until it reaches xB for a certain µ. It leaves the real axis
towards the unit circle when µ increases further. This pole is
the dominant pole in R̂LFxLMS because it is located closer to
the unit circle, compared to the other poles. The location of
xB dominates the FxLMS convergence behavior because the
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distance between xB and the critical point z=1 is maximal
(stability margin). This behavior is previously discovered for
an exact SPM [11]; however, this paper generalizes this find-
ing for an arbitrary SPM.

For the proposed SPM, xB can be found by substituting
Eq. (14) into (11) and (10):

xB =
[Deq]

[Deq ]+1 ≈
Deq

Deq+1 (15)

Thus, the location of xB (approximately) does not change
when the proposed SPM is used instead of the exact SPM.
This behavior can be seen by comparing the root loci shown
in Figs. 2a and 2b. This means that the proposed SPM has no
influence on the trajectory of the dominant pole in the FxLMS
root locus. Consequently, it has no influence on the conver-
gence behavior of this algorithm.

4.2.2. Computational Efficiency

In the case of using the proposed SPM for computing xf̂ by
using Eq. (2), only L multiplication operations are required
(L is the length of x). This is while L×Q multiplication and
L × (Q− 1) addition operations are required in the case of
using an exact SPM. This comparison shows that in the case
of using the proposed SPM, computational efficiency of the
FxLMS algorithm is highly increased.

5. EXPERIMENTAL RESULTS

For practical verification of the theoretical results, the experi-
mental ANC system shown in Fig. 3 is used. The key compo-
nent of this system is a CompctRIO controller made by Na-
tional Instruments. This setup is installed in an acoustic duct
with the dimentions of 1.5×0.25×0.25 meter. The clock rate
of the system is 40 MHz and its operational frequency is 5
KHz. The software deployed on the CompactRIO incudes
two modules: 1) SPM Identification and 2) FxLMS-based
ANC. Module 1 performs the computations required for the
off-line identification of a nearly-exact SPM (electro-acoustic
path from the control source to the error microphone). This
module generates an input white noise (0 dB, 10-1000 Hz)
through the control source and records the output signal by us-
ing the error microphone. A model is identified by performing
a simple LMS algorithm on the input and output signals [13].
The identified model has Q=256 coefficients. Module 2 per-
forms the computations given in Eq. (1-2). The length of the
adaptive filter (W ) used for this module is L=256 and µ is set
to its optimal value [9].

In the first experiment, the identified nearly-exact SPM is
used. A white noise with the power of 0 dB and the frequency
range of 100-500 Hz is generated by a computer loudspeaker
as the original noise entering the duct. The variation of the
residual noise is shown in Fig. 4a. As seen, the original noise
is attaneuated by about 20 dB in about 100 mS. In this ex-
periemnt, the FxLMS-based ANC modules needs to performs

NI CRIO Real-time Controller

Original
Noise

e(n)x(n) Control 
Source

y(n)

Residual
Noise

Fig. 3: Experimental FxLMS-based ANC system
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Fig. 4: Experimental results

65536 multiplication and 65280 addition operations for com-
puting each sample of the filtered-reference vector (accodring
to Section 4.2.2).

In the second experiment, the proposed SPM that has only
one non-zero coefficient is used. A similar input noise is used.
The frequency spectrum of the original and residual noise is
shown in Fig. 4b. As seen the result is nearly identical to
the result obtained from the first experiment. This is while
the FxLMS-based ANC module performs only 256 multipli-
cations and 255 addition operations in this experiment.

6. CONCLUSION

Root locus theory has a good potential for the analysis of
FxLMS algorithm dynamics. FxLMS root locus can be
sketched for an arbitrary SPM by following the rules intro-
duced in this paper. The analysis of this root locus leads
to intresting results. The first result obtained by this paper
is that the FxLMS convergence can be assured if the corre-
sponding coefficeints of SP and SPM have the same signs.
The second result shows the existence of a simple SPM with
only one non-zero coefficient that can maintain the FxLMS
algorithm performance. This SPM can increase the computa-
tional efficiency of the FxLMS algorithm, without changing
its convergence behaviour.
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