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ABSTRACT 
 
This paper proposes an improved variable step-size (VSS) 
scheme for zero-point attracting projection (ZAP) 
algorithm. The proposed VSS is proportional to the 
sparseness difference between filter coefficients and the true 
impulse response. Meanwhile, it works for both sparse and 
non-sparse system identification, and simulation results 
demonstrate that the proposed algorithm could provide both 
faster convergence rate and better tracking ability than 
previous ones. * 

 
Index Terms—Variable step-size, zero-point attracting 

projection, adaptive filter, sparse system identification 
 

1. INTRODUCTION 
 
In the sparse system identification problem, such as the 
network echo cancellation, only a small percentage of 
coefficients are active and most of the others are zero or 
close to zero. Considering that the classical least-mean-
square (LMS) algorithm is slow for sparse system 
identification [1], the family of proportionate algorithms 
has been proposed to exploit the sparse nature of the system 
to improve performance [2]-[4]. Besides to that, a new kind 
of method, zero-point attracting projection (ZAP), has been 
recently proposed to solve sparse system identification 
problem. The zero-attracting LMS (ZA-LMS) algorithm 
uses an l1 norm penalty in the standard LMS cost function 
[5] and l0 norm LMS was proposed in [6] too. When the 
solution is sparse, the gradient descent recursion will 
accelerate the convergence of near-zero coefficients of the 
sparse system.  

The above scheme was referred as zero-point attraction 
projection (ZAP) in [7]. The performance analysis of ZA-
LMS has been report in [8]-[10], and analysis showed that 
the step-size of the ZAP term denotes the importance or the 
intensity of attraction. A large step-size for ZAP results in a 
faster convergence, but the steady-state misalignment also 
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increases. So, the step-size of ZAP is also a trade-off 
between convergence rate and steady-state misalignment, 
which is similar to the step-size trade-off of LMS.  

There are some theoretical results about variable step-
size ZAP but they could not be calculated in practice [9]-
[11]. One practical variable step-size ZAP was proposed by 
You, etc. in [12], and You’s VSS ZAP was simply 
initialized to be a large value and reduced by a factor when 
the algorithm is convergent. However, this heuristic 
strategy cannot track the change in the system response due 
to the very small steady-state step-size.  

Another better VSS-ZAP was proposed in [13], in 
which a variable step-size based on the gradient of 
estimated filter coefficients’ sparseness was proposed and 
the gradient is approximated by the difference between the 
sparseness measure of current filter coefficients and an 
averaged sparseness measure. This variable step-size ZAP 
works in the way of being an indicator whether the current 
filter’s sparseness has reached the steady-state instead of 
measuring the real sparseness difference between the filter 
and true system response. Meanwhile, in this paper, a new 
variable step-size ZAP is proposed by defining the 
sparseness distance, then the proposed VSS is determined 
systematically based on sparseness difference before filter 
coefficients and true impulse response.  

This paper is organized as follows. Section 2 reviews 
the recently VSS algorithms for ZAP, and in Section 3 we 
present the proposed VSS ZA-LMS algorithm. The 
simulation results and comparison to the previous VSS 
algorithms are presented in Section 4. Finally conclusions 
are drawn in Section 5. 

 
2. REVIEW OF VSS ZAP 

 
In this section, we will review the ZAP algorithm and the 
variable step-size ZAP algorithms in previous literature. 
 
2.1. Introduction to ZAP 
 
Consider a linear system with its input  nx  and output 

 d n  related by 
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      ( ),Td n n n v n x h  (1) 

where      [ 1 1 ]Tx n x n x n L   x is the input vector, 

0 1 1[ ]T
Lh h h  h is unknown system with length L, and 

 v n  is the additive noise which is independent with 

 nx . The estimation error of the adaptive filter output 
with respect to the desired signal is defined as  

        .Te n d n n n  x w   
(2) 

This error,  e n  is used to adapt the adaptive filter 

 nw . The ZA-LMS algorithm with l1 norm constraint was 
proposed in [6], and its update equation is  

          1 sgn 1 ,n n n e n n     w w x w  (3) 

in which   is the step-size of adaption,   is the step-size 
of zero attractor, and  sgn   is a component-wise sign 
function defined as 

 
, 0;

sgn
0, .

x x
xx

elsewhere

  



 (4) 

 
2.2. Review of Variable Step-size ZAP Algorithms 
 
The variable step-size for ZAP used in [12] is rather direct: 
  is initialized to be a large value, and reduced by a factor 
  when the algorithm is convergent. This reduction is 
conducted until is sufficiently small, i.e. min  , which 
means that the error reaches a low level. However, as 
mentioned in the introduction, this heuristic strategy will 
not react to a change in the system response since it will get 
stuck due to the very small steady-state step-size.  

Therefore, in order to solve this issue, a new variable 
step-size ZAP algorithm was proposed in [13] by us, which 
is based on the measurement of the sparseness gradient 
approximated by the difference between the sparseness 
measure of current filter coefficients and an averaged 
sparseness measurement as below.  

The averaged sparseness measure could be estimated 
adaptively with a forgetting factor  : 

        1 1 , 0 1,n n J n         w  (5) 

where   J nw  is a sparseness measure of the filter 

coefficients, and we will use the following l1 norm 
sparseness measure through this paper  

      
1

1
.

L

i
i

J n n w n


 w w  (6) 

The difference between the sparseness measure of 
current filter coefficients and the averaged sparseness 
measurement is calculated by: 

      1n J n n   w  (7) 

In order to obtain a good and stable estimate of the 
gradient, a long-term average using infinite impulse 
response filters is used to calculate the proposed variable 
step-size  

       1 1 , 0 1.n n n           (16) 

As mentioned in the introduction, this variable step-
size ZAP indicates whether the current filter’s sparseness 
has reached the steady-state instead measuring the 
sparseness distance between the filter and real system. 
Therefore, we will propose a variable step-size algorithm 
for ZA-LMS which is derived based on the difference 
between current filter coefficients’ sparseness and the real 
sparseness in next section. 

 
3. PROPOSED VSS ZA-LMS 

 
In this section, we will propose the variable step-size ZAP, 
and further improve its performance for non-sparse system 
identification. 
 
3.1. The Proposed Scheme of Variable Step-size ZAP 
 
Our proposed new variable step-size ZAP algorithm is 
based on the idea that the step-size should be proportional 
to the sparseness distance which is defined as the difference 
between the sparseness measure of current filter coefficients 
and real sparseness of the system. Based on l1 norm, we 
define the following averaged sparseness distance 

         
1 1

1 1

1 1 .
L L

i i
i i

n n n w n h n
L L


 

    w h  (8) 

Then we rewrite (8) as 

           1 sgn sgn .T Tn n n n n
L

  h h w w  (9) 

However, considering the real system is unknown, we 
argue that   sgn nh  could be approximated by 

  sgn nw . This assumption is acceptable because it holds 

for the coefficients with large magnitude, and for the small 
and unstable coefficients close to zero, considering that its 
magnitude is relatively small, it will not cause large error in 
the approximation. We will verify the performance of this 
assumption in the simulation section later, and using this 
assumption in (9), we have 
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         

    

1 sgn

1 sgn .

T

T

n n n n
L

n n
L

  

 

h w w

h w

 (10) 

The system mismatch is defined as      n n n  h h w . 
Using the similar approximation in [14], we have 

    
        

   

sgn

sgn
.

T

T T

T

n n

n n n n
L

n n






h w

h x x w
x x

 (11) 

It should be noted that we use the following 
assumptions in [14] 

         2 2, and .T T
xx x xn n n n n L  R = x x I    x x  (12) 

Furthermore, the residual error is defined as 

     .Tn n n  h x  (13) 

Substituting (11) and (13) into (10), we could rewrite 
(10) as 

 
      

   
sgn

.
T

T

n n n
n

n n


 
x w
x x

 (14) 

However, the residual error in (14) is still unknown, 
but similar to [13], to avoid over-shoot, a long-term time 
average should be used to calculate the proposed variable 
step-size as below  

       1 1 , 0 1,n n n           (15) 

in which   is a smoothing factor and   is a correction 
factor. Meanwhile, considering the additive noise is 
independent with input, the cross-correlation between the 
input and residual error is the same as the cross-correlation 
between input and error. Therefore, we could replace the 
residual error in (14) with the error signal, which gives us 

 
      

   
sgn

.
T

T

e n n n
n

n n
 

x w
x x

 (16) 

3.2. Improved Variable Step-size ZAP for Both Sparse 
and Non-sparse System 

 
Besides to the l1 norm sparseness measures defined in 

(6), another popular measurement of channel sparsity was 
used in [13], and for a channel  nh , its sparsity 

  n h can be defined as 

    
 

1

2

1 ,
nLn

L L L n


 
  
   

h
h

h
 (17) 

where L > 1 is the length of the channel  nh , and  
1

nh  

and  
2

nh  are the l1 norm and l2 norm of  nh . The 

value of   n h  is between 0 and 1. For a sparse channel 

the value of sparsity is close to 1 and for a dispersive 
channel, this value is close to 0. In [13], this property was 
used to remove the ZAP term when the channel is 
dispersive, which is preferable.  

We could also take advantage of this property and 
propose the following averaged sparseness distance as 
variable step-size for ZA-LMS 

       

 
 
 

 
 

1 1

2 2

1

1 .
1

n n n
L

n n

n nL L

   

 


h w

h w

h w

 (18) 

We assume the gain of the real channel and filter 
coefficients are the same, i.e. 

   
2 2

.n nh w  (19) 

However, this assumption might not be accurate, 
especially at the initial phase of the adaption. Therefore, a 
reasonable minimum threshold of  

2
nw  should be used 

to avoid this issue. Then we could further simplify (19) as  

 
   

   
1 1

2

1 1 .
1

n n n
nL L

  


h w
w

 (20) 

Considering (16), we obtain the proposed variable step-
size for ZA-LMS which could work for both dispersive and 
sparse channel as below 

   
      

   
2

sgn1 1 .
1

T

T

e n n n
n

n nnL
 



x w
x xw

 (21) 

 
4. SIMULATION RESULTS 

 
In this section, we do the results of computer simulations in 
the scenario of echo cancellation. We use both sparse 
impulse response and a dispersive random impulse 
response. They are both with the same length, L=512, and 
the LMS adaptive filter is with the same length.  
      The convergence state of adaptive filter is evaluated 
using the normalized misalignment which is defined as 

10 2 2
20log ( )h w h  (22) 

The input is white Gaussian noise signal and independent 
white Gaussian noise is added to the system background 
with a signal-to-noise ratio, SNR = 30 dB. 
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In the first simulation, we would like to verify the 
performance of the approximation      sgn sgnn nh w  

in (10) as in Fig. 1. In order to demonstrate the tracking 
ability, there is an echo path change at sample 5000 by 
switching from one sparse impulse response to another 
sparse impulse response. It is observed that, even though 
the approximation is not very accurate in the initial phase, 
it could be very good for tracking the change of the echo 
path. This is predictable since the filter coefficients are 
initialized as zeros, then there will be larger difference 
between   sgn nh  and   sgn nw . However, this 

assumption is still good enough for the application scenario 
of proposed variable step-size ZAP, which will be verified 
by the following simulations.  

In the second simulation, we compare the proposed 
VSS algorithm to LMS, fixed step-size ZA-LMS, You’s 
VSS in [12] and Liu’s VSS in [13] for sparse system 
identification. It should be noted that sparseness measure 
(17) is used in Liu’s VSS, and (21) is used as the proposed 
variable step-size. Meanwhile, to evaluate the performance 
of the tracking ability, there is also an echo path change at 
sample 5000, and according to the simulation result in Fig. 
2, the parameters of the variable step-size are intentionally 
set to have similar steady-state misalignment for the first 
adaption before echo path change. It is observed that, 
because You’s VSS cannot react to echo path change, it 
could only obtain similar tracking performance with 
original ZAP. Meanwhile, Liu’s VSS and proposed VSS 
could track the echo path change quickly, and the proposed 
VSS outperforms the previous ones.   

Next, in order to demonstrate the performance for 
dispersive channel, we switch one dispersive impulse 
response to another dispersive response at sample 5000, 
and use the same VSS algorithms and parameters as the 
second simulation. As shown in Fig. 3, it is clear that the 
proposed VSS ZAP could also obtain much better tracking 
performance under non-sparse system than previous ones 
and avoid the possible performance degradation. 
 

5. CONCLUSION 
 
An improved variable step-size zero-point attraction 
projection algorithm was proposed based on the estimation 
of l1 sparseness distance, which could work for both sparse 
and non-sparse system identification. Simulation results 
verify that the proposed VSS ZAP could provide better 
tracking ability than previous VSS ZAP algorithms for both 
sparse and non-sparse system identification.  
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Fig.1 Performance demonstration of approximation 

     sgn sgnn nh w  in (10). 
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Fig.2 Comparison of normalized misalignment for sparse 

system identification. 
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Fig.3 Comparison of normalized misalignment for 

dispersive system identification. 
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