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International Audio Laboratories Erlangen*
Am Wolfsmantel 33, 91058 Erlangen, Germany

{maria.luis.valero,emanuel.habets}@audiolabs-erlangen.de

ABSTRACT

A partitioned-block-based architecture for a model-based acoustic
echo canceller in the frequency domain was recently presented.
Partitioned-block-based frequency domain adaptive filters provide
a lower algorithmic delay compared to the non-partitioned formu-
lations, which is achieved by partitioning the acoustic echo path
and hence shortening the time-frequency transforms. Under these
circumstances, avoiding the linearisation of the involved circular
convolutions can significantly impair the performance. This paper
extends the already proposed diagonalization of the Kalman gain
matrix by taking into account the neglected inter-band correlations to
improve the performance of the acoustic echo canceller. This comes
at the cost of a moderate increase in the algorithmic complexity.

Index Terms— Acoustic Echo Cancellation, Frequency Do-
main Adaptive Filters, Kalman Filter

1. INTRODUCTION

In a loudspeaker-enclosure-microphone environment, the signal re-
produced by the loudspeaker propagates through the near-end room
and is acquired by the microphone. Acoustic echo cancellation
(AEC), [1, 2], is the most commonly used technique to prevent that
the acoustic echo signal is transmitted back to the far-end. AEC
uses adaptive filtering techniques, [3], to estimate the acoustic echo
signal, which is subtracted from the microphone signal prior to
transmission. Frequency domain adaptive filters (FDAF), [4], are
known to present less algorithmic complexity as their time domain
counterparts. This is the consequence of using fast convolutions
instead of the highly complex time domain ones.

It is known that fast convolutions deliver only a limited number
of coefficients that correspond to a linear convolution [4, 5]. Con-
sequently, only the linear components have to be selected to ensure
the optimal performance of the FDAF. The selection is implemented
using a constraint, which is computationally complex as it involves
transforming the signal blocks back and forth several times per frame
or performing highly time-consuming matrix multiplications in the
frequency domain. In the past, several approaches were presented
which addressed the simplification of the constraints, [6–11]. Their
aim was to reduce the algorithmic complexity by either reducing the
number of constraints or simplifying them in the frequency domain.

A model-based AEC was proposed in [12, 13], which uses a
Kalman filter, [14], in the frequency domain for the echo path es-
timation. The main advantages of the model-based AEC are the
robustness against doubletalk, [15], and that it inherently estimates
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the residual echo after AEC, which can be used in a post-filter. A
partitioned-block (PB) based formulation, based on [16], was pre-
sented in [17] which reduces the overall delay, enabling its use in
modern communication devices. In [17] it was proposed to simplify
the constraints in the frequency domain by using only the band-to-
band correlations. Yet, this approximation is only valid if the time-
frequency transforms are long enough [8], and this requirement is
not always met by PB-FDAF. In [11] an analysis on the use of cross-
band filters for AEC in the short-time Fourier transform domain was
presented, which showed that using inter-band correlations enhances
the AEC performance if the signal-to-noise ratio (SNR) is suffi-
ciently high. In the following, an alternative formulation to the one
in [17] is presented, which uses inter-band correlations only in the
Kalman gain matrix computation. Thus, all involved covariance ma-
trices are still formulated using only band-to-band correlations. The
proposed Kalman gain matrix computation increases the algorithmic
complexity moderately compared to the simplification in [17].

2. PARTITIONED-BLOCK-BASED FORMULATION

In a hands-free communication scenario, the signal acquired by the
microphone, y(n), at discrete time index n is usually described by

y(n) = x(n) ∗ h(n) + s(n) + u(n) = d(n) + r(n), (1)
where d(n) is the acoustic echo signal, which is the result of the
propagation of the far-end signal, x(n), through the near-end room.
In the following, it is assumed that the acoustic echo path, h(n),
can be modelled by a finite impulse response (FIR) filter of length
L. In addition, only one interference signal, r(n), is taken into ac-
count which comprises both the near-end speech, s(n), and the back-
ground noise, u(n). In AEC, the adaptive algorithm is driven by the
error signal after adaptation,

e(n) = y(n)− x(n) ∗ ĥ(n) = d(n)− d̂(n) + r(n), (2)
where estimation is denoted by the superscript ·̂. In order to obtain
a PB-based formulation, h(n) is partitioned into B blocks of length
N = L/B. Hence, at frame k for block b

hb(k) = [hk(bN), . . . , hk(bN +N − 1)]T, (3)

xb(k) = [x(kR− bN −M + 1), . . . , x(kR− bN)]T, (4)
where M > N is the length of the input signal frame if the problem
is formulated using the overlap-save method, [4, 5], and R denotes
the frame shift. Consequently, the length of the zero padding needed
to extend hb(k) to match the length of the discrete Fourier transform
(DFT), M , is V = M − N . Hereafter, the time-frequency domain
counterparts of the time domain signal blocks in (3) and (4) are

Hb(k) = F

[
hb(k)
0V×1

]
and Xb(k) = diag{Fxb(k)}, (5)
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respectively, where diag{a} generates a diagonal matrix with the el-
ements of a on its main diagonal. In (5) F denotes the M ×M DFT
matrix, whose elements are F (a, b) = W ab

M = exp(−j2πab/M)
with j =

√
−1. The major benefit of FDAF algorithms is the com-

plexity reduction obtained from the frequency domain convolutions.
Yet, these are equivalent to circular convolutions in the time domain.
Thus, to obtain an optimal behaviour of the algorithm, the wrap-
around components have to be rejected. In the time-frequency do-
main (2) is equivalent to

E(k) = Y(k)− FgF−1

(
B−1∑
b=0

Xb(k)Ĥb(k)

)
, (6)

in which the linearisation of the circular convolution is achieved by
applying the constraining window, g = diag{[01×N ,11×V ]}. Con-
sequently E(k) = F[01×N , e

T(k)]T contains only linear compo-
nents. It must be mentioned that the result of the circular convolu-
tion in (6) contains M − N + 1 linear components. However, for
consistency, all signal blocks are defined to be of length V , i.e.,

q(k) = [q(kR− V + 1), . . . , q(kR)]T,

Q(k) = F[01×N ,q
T(k)]T,

with q ∈ {y,d, r, e} and R ≤ V , which provides the relation
between the frame shift and the partition length.

Now it is possible to define G = FgF−1 which is the frequency
domain constraining matrix, whose elements are

G(m,m′) =
1

M

M−1∑
l=N

W∆m·l
M =

1

M

W∆m·N
M −W∆m·M

M

1−W∆m
M

, (7)

where ∆m = m − m′, and m and m′ are the discrete frequency
indexes. Eq. (7) shows that constraining is similar to decimating in
the frequency domain, [18]. The structure of G depends on both M
andN . IfM is sufficiently larger thanN , the main diagonal is dom-
inant, while the values on the off-diagonals decrease quickly [8]. As
a consequence, it is valid to simplify G = V

M
I if the DFT is long

enough [8], where I is the M ×M identity matrix. However, for
shorter DFT lengths or larger frame overlaps, the error introduced by
neglecting the inter-band correlations is no longer negligible; a thor-
ough analysis for M = 2N is given in [8]. The error can be reduced
by taking a limited number of off-diagonals into account, which de-
pend on the relation V/M and on the SNR. An analysis for arbitrary
analysis and synthesis windows is presented in [11]. Finally, it is
important to note that GY(k) ≡ Y(k), as the linearisation of an
already constrained signal block is redundant.

3. MODEL-BASED STATE-SPACE ALGORITHM

In this section, the partitioned-block model-based AEC is described
using a modified but equivalent formulation as in [17]. The main
difference is that the constraining matrix is applied to the sum of the
convolutions, as in (6), and not to the individual convolutions using
Cb(k) = GXb(k) as in [17]. In the following section, the Kalman
gain matrix simplification proposed in [17] is briefly described, fol-
lowed by the proposed simplification. An efficient implementation
of the proposed Kalman gain matrix computation, including a com-
plexity analysis and a performance evaluation, is also provided.

The model-based AEC algorithm, [13], is developed based on
the assumption that the acoustic echo path varies only gradually,
which can be described using a first-order Markov model, as de-
picted in Fig. 1. The acoustic echo path at frame k is then defined
by

Hb(k) = AHb(k − 1) + ∆Hb(k − 1), (8)

Fig. 1: Partitioned-block-based state-space architecture

where ∆Hb(k−1) is the zero-mean process noise, which is assumed
to be uncorrelated, and A is the time-invariant transition matrix. As-
suming that the different echo path partitions, and their updates, are
mutually uncorrelated and have zero-mean, one can now develop the
state-space algorithm.

Given (8), it is reasonable to describe the adaptation of the filter
coefficients in two steps, i.e., transition and update,

Ĥb(k|k − 1) = AĤb(k − 1) (9a)

Ĥb(k) = Ĥb(k|k − 1) + G̃Kb(k)E(k|k − 1), (9b)

where Kb(k) is the Kalman gain matrix (KGM), [13], and G̃ is the
fast correlation constraining matrix. It is assumed that the filter up-
date vector is perfectly linearised as described in [4], and hence G̃
is omitted in the remainder of the paper for brevity. It is necessary to
first define the system distance vector,

Wb(k|k − 1) = Hb(k)− Ĥb(k|k − 1) (10a)

Wb(k) = Hb(k)− Ĥb(k)

= Wb(k|k − 1)−Kb(k)E(k|k − 1), (10b)

whose covariance matrix, Ψb
WW (k) = E{Wb(k)WbH(k)}, is

used to obtain the KGM; where E{·} denotes mathematical expec-
tation and ·H denotes hermitian transpose. Using (10a) and (6) it is
possible to define,

E(k|k − 1) = G

B−1∑
b=0

Xb(k)Wb(k|k − 1) + R(k). (11)

Under the assumption that Wb(k) and Y(k) are orthogonal, the
KGM is obtained by equating E{Wb(k)YH(k)} to zero. Which
results in

Kb(k) = Ψb
WW (k|k − 1)XbH(k)GHΨ−1

EE(k|k − 1), (12)
where the covariance matrix of the error signal, ΨEE(k|k − 1), is
equivalent to

G

(
B−1∑
b=0

Xb(k)Ψb
WW (k|k − 1)XbH(k) + ΨRR(k)

)
GH, (13)

where ΨRR(k) is the covariance matrix of the interference signal.
Finally, the covariance matrix of the system distance is also updated

Ψb
WW (k) = (I−Kb(k)GXb(k))Ψb

WW (k|k − 1) (14a)

Ψb
WW (k + 1|k) = AΨb

WW (k)AH + Ψb
∆∆(k), (14b)

where the covariance matrix of the process noise is
Ψb

∆∆(k) = Ψb
ĤĤ(k − 1)−AΨb

ĤĤ(k − 1)AH, (15)

where Ψb
ĤĤ

(k) is the covariance matrix of the estimated acoustic
echo path. Eq. (15) holds under the assumption of stationarity of the
acoustic echo path and the noise vectors in (8). As stated in [13],
a covariance matrix in the DFT domain is related to a diagonal ma-
trix containing the power spectral density (PSD) of the transformed
signal blocks. Hence, it is reasonable to approximate the covariance
matrices by diagonal ones.
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4. SIMPLIFICATION OF THE KALMAN GAIN MATRIX

The implementation of the model-based AEC algorithm as described
in the previous section is not feasible due to the high computational
cost of the M ×M matrix multiplications. Moreover, the error co-
variance matrix given by (13) is usually ill-conditioned or even sin-
gular. In this section, first the simplification of the KGM proposed
in [17] is described, followed by the description of the proposed
method, which takes into account the inter-band correlations.

4.1. Diagonalization of the Kalman gain matrix

In [13,15,17] it is proposed to diagonalize the KGM, allowing to for-
mulate the proposed algorithm analogously to a classical least mean
squares (LMS) type algorithm in the frequency domain, i.e., with
a frequency dependent step-size vector. Using the approximation
GXb(k) ≈ V

M
Xb(k) as proposed in [8], (13) can be written as

V

M

B−1∑
b=0

Xb(k)Ψb
WW (k|k − 1)XbH(k) + ΨRR(k). (16)

In addition, in [17] it is proposed to directly estimate the covariance
matrix of the error signal instead of using (13), avoiding the estima-
tion of the interference signal. The KGM is then obtained by

Kb(k) =
V

M
Ψb

WW (k|k − 1)Ψ−1
EE(k|k − 1) ◦XbH(k), (17)

where ◦ denotes an element-wise or Hadamard matrix multiplica-
tion. Eq. (17) is valid under the assumption that ΨEE(k|k − 1) is
diagonal, and consequently its inverse is also diagonal. Hereafter, by
initializing Ψb

WW (0) = I, both the KGM and the system distance
covariance matrix are diagonal matrices.

4.2. Improved implementation using inter-band correlations

The diagonalization of the KGM delivers the lowest-possible algo-
rithmic complexity, yet the performance can be reduced if compared
to taking the inter-band correlations into account. The proposed
method is also based on the assumption that the error covariance
matrix can be approximated by a diagonal matrix. In contrast to the
derivation in Sec. 4.1, the diagonalization of the KGM is not forced,
whose elements can be expressed as

Kb(m,m′, k) =Ψb
WW (m,m, k|k − 1)Xb∗(m,m, k)

×GH(m,m′)Ψ−1
EE(m′,m′, k|k − 1), (18)

with Kb(m,m′, k) 6= 0 for ((m −m′))M ≤ T , where ((·))M de-
notes moduloM operation and 2T is the number of off-diagonals of
G used for the simplification. This is analogous to taking 2T cross-
bands around the frequency band m, [11]. As it can be observed in
(18), only the elements on the main diagonal of Ψb

WW (k) are used.
Hence, the calculation of (14a) can be simplified to

Ψb
WW (k) = (I−Kb(k)GXb(k)) ◦Ψb

WW (k|k − 1), (19)

which ensures that Ψb
WW (k) is diagonal if Ψb

WW (0) = I. Now,
given (18) and (19), it can be observed that it is possible to take
into account a limited number of off-diagonals of the KGM, without
having to perform the complete matrix multiplications.

The implementation can be optimized by implicitly applying the
Kalman gains in (9b),

∆Ĥb(m, k) = Ψb
WW (m,m, k|k − 1)Xb∗(m,m, k)× (20)

m+T∑
l=m−T

GH(m, lM )Ψ−1
EE(lM , lM , k|k − 1)E(lM , k|k − 1),

where lM = ((l))M and the second part of the equation can be cal-
culated only once per frame as it is block independent. In addition,
(19) can be simplified by

Ψb
WW (m,m, k) = (1−Ψb

WW (m,m, k|k − 1)U(m,m, k)×

|Xb(m,m, k)|2)Ψb
WW (m,m, k|k − 1), (21)

as Xb(k) and U(k) are diagonal matrices; being

U(m,m, k) =

m+T∑
l=m−T

|G(m, lM )|2Ψ−1
EE(lM , lM , k|k − 1), (22)

which is block independent and has to be calculated only once
per frame. In addition, due to the symmetry of G it holds that
|G(m, ((m + c))M )|2 ≡ |G(m, ((m − c))M )|2, ∀c < M , which
enables the further simplification of (22). The implementation using
(20) and (21) does not explicitly calculate the Kalman gains, but it
is completely equivalent to making use of (18) and (19).

5. COMPLEXITY ANALYSIS

A complexity analysis is provided to evaluate the increase in algo-
rithmic complexity caused by the utilization of inter-band correla-
tions as described in the previous section. It must be noted that the
proposed implementation with T = 0 is approximately as complex
as the proposed implementation in [17]. The common complexity
per frame to all methods, taking into account the constraint of the
filter update in (9b), is approximately
CFDAF ≈ (3 + 2B)O(FFT) +BO(CpxM) +B(4M), (23)

where FFT denotes fast Fourier transform. The computational com-
plexity of a FFT can be approximated by O(FFT) ≈ 2M log2(M)−
4M and the one of a complex multiplication by O(CpxM) ≈ 6M ,
see [10] and the references therein. Furthermore, the complexity of
(20) using 2T off-diagonals can be approximated by

C∆Ĥ ≈ B(2M + O(CpxM)) + (3 + 7T )M, (24)
if the symmetry of G is exploited in the implementation. Finally, the
complexity of the update of the system distance covariance matrix,
(21) and (22), is approximately

CΨWW ≈ B(6M) + (1 + 2T )M. (25)
The total complexity overhead, introduced by (24) and (25), is

of 9TM operations per frame per additional pair of off-diagonals.
Hence, it can be expected that the increase in complexity will be
small, as the overhead does not depend on the number of partitions.
In Fig. 2 the complexity ratios between the diagonalized and the pro-
posed method with 2T off-diagonals, denoted as CT |0, are depicted
for different number of partitions and frame lengths.

It can be concluded that the complexity increases only moder-
ately if B is small, while the complexity ratio tends to one for an in-
creasing number of partitions. For instance, even using 4 additional
off-diagonals, the complexity ratio is below 1.25 for M = 128 and
only 1 partition, which is the worst-case in the analysis.
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Fig. 2: Complexity ratio
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6. PERFORMANCE EVALUATION

In this section, some simulation results are presented to evaluate
the performance of the proposed algorithm. The simulations were
run using both speech and unit-variance white Gaussian noise with
zero mean as excitation signals, which were convolved with the first
L = 1024 coefficients of a room impulse response (RIR) of total
length 4096 taps at a sampling frequency of 16 kHz. The RIR was
generated using the image method, [19], for a room size of 5×4×3
(width× length×height) cubic meters and a reverberation time, T60,
of 350 ms. The distance between loudspeaker and microphone was
set to d = 1 m. Two different FFT lengths were used, M = 256 and
M = 512, with M = 2N and a frame overlap of 50%; i.e., V = R.
The performance of the algorithm was tested under different noise
conditions by adding white Gaussian noise to the microphone signal.
Every simulation was run 50 times and the outcomes were averaged.

Concerning the model-based AEC parameters, the transition
matrix A = 0.999 · I was used, which is known to deliver the best
performance, [15, 17]. The error covariance matrix was estimated
using a first-order recursive filter, i.e.,

Ψ̂EE(k) = βΨ̂EE(k − 1) + (1− β)diag{E(k) ◦EH(k)}, (26)

with a forgetting factor β = 0.91. The estimation of Ψ̂b
ĤĤ

(k) was
carried out analogously. The normalized misalignment (NMA) of
the estimated acoustic echo path with respect to the generated RIR,

NMA(k) = 10 log10

(
||h(k)− ĥ(k)||22
||h(k)||22

)
, (27)

where || · ||2 denotes the l2-norm, and the echo return loss enhance-
ment (ERLE),

ERLE(k) = 10 log10

(
||d(k)||22

||y(k)− d̂(k)||22

)
, (28)

were used as performance measures.
Two sets of simulations were run, on one hand, for M = 256

and a segmental echo-to-noise ratio (ENR) of 30 dB, the perfor-
mance of the proposed method using a different number of off-
diagonals was compared. The diagonalization of the KGM, which
is equivalent to the proposed method with T = 0, was compared
against T = 1, T = 3 and the non-simplified, or full-band, KGM
computation. The condition T = 2 was not included in the sim-
ulations as for M = 2N , G(m,m ± 2̇) = 0, where 2̇ denotes
multiple of 2. Figs. 3a and 3b show the misalignment and the
ERLE, respectively, if the excitation signal is white Gaussian noise.
It can be observed that increasing the number of off-diagonals not
only increases the convergence speed but, in addition, the algorithm
converges to a lower steady-state misalignment and a higher final
ERLE. It can also be seen that adding one pair of off-diagonals
already performs comparably to the full-band method. Figs. 3c
and 3d depict the outcome of the simulation for speech. Similar
conclusions as before can be drawn from the misalignment results.
Fig. 3d shows that the diagonalization of the KGM performs worse
than the other methods under test. However, it is not possible to
conclude that using all the inter-band correlations outperforms the
proposed method with T = 1 and T = 3.

On the other hand, the proposed algorithm was evaluated un-
der different noise conditions for two transform lengths using white
Gaussian noise as excitation signal. In Fig. 4 both the steady state
ERLE and the convergence speed of the algorithm, until the steady-
state is reached, are shown. It can be observed that for a longer DFT
length all conditions reach a higher final ERLE. In addition, for high
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Fig. 3: Performance, M = 256 and segmental ENR = 30 dB
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Fig. 4: ERLE as a function of the input ENR

ENR levels the conditions with T > 0 outperform the algorithm
with T = 0, and they all converge to a similar ERLE level. Yet,
for lower ENR levels, T = 0 performs comparably or even slightly
better than the proposed algorithm with T > 0. This was expected
based on the analysis in [11]. The analysis of the convergence speed
shows that using the inter-band correlations accelerates the adapta-
tion process; for instance, the convergence speed is even doubled for
ENR ≥ 20 dB.

7. CONCLUSIONS

A simplification of the Kalman gain matrix for the sate-space PB-
FDAF for AEC was presented. The proposed method takes into ac-
count the inter-band correlations to improve the performance of the
final algorithm. To this end, first the expressions of the state-space
PB-FDAF algorithm in [17] were reformulated to highlight the con-
volution constraining matrix. Secondly, the proposed simplification
and its optimized implementation were described, whose complex-
ity analysis demonstrated that the complexity overhead can be kept
moderately low. Finally, the performance evaluation showed that the
use of inter-band correlations in the Kalman gain matrix computa-
tion results in an improvement of the AEC performance for short
DFT lengths if the ENR level is sufficient. Moreover, during the
early adaptation stage, the convergence rate is visibly increased.
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