
COMPENSATING FOR ASYNCHRONIES BETWEEN MUSICAL VOICES IN
SCORE-PERFORMANCE ALIGNMENT

Siying Wang Sebastian Ewert Simon Dixon

Queen Mary University of London, UK

ABSTRACT
The goal of score-performance synchronisation is to align a given
musical score to an audio recording of a performance of the same
piece. A major challenge in computing such alignments is to account
for musical parameters including the local tempo or playing style. To
increase the overall robustness, current methods assume that notes
occurring simultaneously in the score are played concurrently in a
performance. Musical voices such as the melody, however, are often
played asynchronously to other voices, which can lead to significant
local alignment errors. In this paper, we present a novel method that
handles asynchronies between the melody and the accompaniment
by treating the voices as separate timelines in a multi-dimensional
variant of dynamic time warping (DTW). Constraining the alignment
with information obtained via classical DTW, our method measur-
ably improves the alignment accuracy for pieces with asynchronous
voices and preserves the accuracy otherwise.

Index Terms— score-audio alignment, multi-dimensional dy-
namic time warping, asynchrony, melody lead.

1. INTRODUCTION

Methods for the automatic alignment of different versions of a piece
of music have a long history in music signal processing. In partic-
ular, the score-performance alignment problem has seen significant
efforts in recent years. Applications include real-time score follow-
ing [1–5] and automatic page-turning [6], musical expression anal-
ysis [7, 8], navigation in large music collections [9], informed au-
dio editing and source separation [10]. In general, given a symbolic
score representation (MIDI, MusicXML) and an audio recording of a
performance of a piece of music, score-performance synchronisation
methods aim at linking each note event in the score to its correspond-
ing position in the recording.

A main difficulty in computing such alignments stems from the
diversity of possible interpretations of a piece by a musician, i.e.
not only the acoustic conditions can change considerably between
recordings but also musical parameters including the playing style,
expressive timing, or embellishments. To increase the overall robust-
ness, state-of-the-art methods typically make simplifying assump-
tions about the problem, and in particular, that notes occurring si-
multaneously in the score are also played concurrently during a per-
formance [11–13]. However, introducing asynchronies between si-
multaneous notes is considered an important part of musical expres-
sion. For example, emphasising a musical voice such as the melody
by playing it earlier compared to other voices is a form of expression
typically referred to as melody lead [14]. While such asynchronies
usually do not have a strong effect on the alignment on a coarse level,
the alignment accuracy on a finer, local level can drop measurably as
the asynchrony is not expected by current methods.
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To cope with possible asynchronies between the melody and the
accompaniment, the main idea in this paper is to separate the two
voices in the score and to compute a joint three-dimensional align-
ment between the two score timelines and the audio timeline. While,
in this basic form, the additional degree of freedom in the alignment
can lead to measurable improvements in alignment accuracy on a
fine level, it can also cause a loss of accuracy on a coarser, global
level. Therefore, to exploit the overall robustness of existing align-
ment methods, we employ a state-of-the-art method to compute a
coarser alignment in a first step, which is then used to constrain and
guide the alignment in our proposed method. This way, our method
not only combines the robustness of current methods with an im-
proved alignment accuracy, but also drastically lowers the computa-
tional cost for computing a three-dimensional alignment (given the
guiding alignment, from cubic to linear in the length of the recording
or score).

The paper is organized as follows. Technical details of our
method are described in Section 2. We report on some of our ex-
periments in Section 3. Conclusions and discussions of future work
are given in Section 4. Related work is discussed in the respective
sections.

2. ALIGNMENT METHOD

A general procedure to synchronise a score and a performance can
be summarized in three simple steps. First, the score and the audio
are converted to a suitable, common feature representation. Second,
by comparing each element in the score feature sequence with each
element in the audio sequence using a distance measure, one obtains
a distance or cost matrix. Third, based on such a matrix, a synchro-
nisation method is applied to obtain a cost-minimizing alignment.
In this context, various alignment methods have been proposed, in-
cluding Dynamic Time Warping (DTW) [15], Hidden Markov Mod-
els (HMM) [16], Conditional Random Fields (CRF) [11], general
graphical models [17], and Particle Filter / Monte-Carlo Sampling
(MCS) based methods [3, 5]. While all these approaches typically
yield robust alignments, none of them accounts for asynchronies be-
tween voices. An exception was presented in [18] but only for align-
ing MIDI files. Further, in [19], a greedy, post-processing method is
introduced, which locally refines the alignment on a note level.

To model possible asynchronies between voices, we need to
modify all three steps of the procedure above. First, the score can
no longer be treated as a single data stream. Instead, the voices
have to be isolated from the score and features have to be derived
for each voice separately. Second, the comparison of features from
all three sequences leads to a three-dimensional cost matrix (or cost
tensor). Third, an extended alignment method is needed, which is
able to deal with three sequences. Interpreting the alignment as
a multi-dimensional data series synchronisation problem leads to
two existing methods: the Asynchronous Hidden Markov Model
(AHMM) [20] and the Multi-Dimensional Dynamic Time Warping
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Fig. 1. A three-dimensional cost tensor. (a) Three-dimensional
alignment path of the melody (Mel), accompaniment (Acc) and au-
dio; (b) Projections of the path (black) onto x-z (red), y-z (blue) and
x-y (green) planes.

(MD-DTW) [21]. These methods have been applied to various prob-
lems, including audio-visual speech recognition, and in particular
for bi-modal speech and gesture fusion [22]. Both approaches share
similar algorithmic roots (dynamic programming). In the following,
we introduce our method as an extension to MD-DTW.

2.1. Computing Features for Individual Voices

While a musical score can often be separated into various voices,
we focus in the following on the melody and accompaniment parts.
From a musical point of view, these voices are particularly important
for us as asynchrony between them has been reported and analysed
in musicological studies [14]. Also from a numerical point of view
this is beneficial, as only three timelines need to be aligned, which
limits the computational complexity of the alignment problem.

We separate the melody and the accompaniment notes from the
score using the skyline algorithm [23], which can be replaced by
more complicated methods, such as the contig mapping [24], in fu-
ture work. Once separated, the feature computation itself is essen-
tially identical to previous methods. We compute the feature se-
quences X := (x1, x2, . . . , xK) and Y := (y1, y2, . . . , yK) for
the two score voices as well as Z := (z1, z2, . . . , zL) for the au-
dio, with xn, ym, z` ∈ F where F is a space containing two types
of features similar to the approach described in [12]. The first type
is a 88-dimensional log-frequency feature, whose entries encode a
short-time intensity in spectral bands with centre frequencies corre-
sponding to the 88 keys on a grand piano, see [25, 26] for informa-
tion on how to derive such features from audio and MIDI represen-
tations. Additionally, we include a second 88-dimensional feature
type which indicates possible onset positions separately for each key,
see [12] for details. As shown previously [12], such a combination
of features can lead to a substantial increase in alignment accuracy.

2.2. Three-Dimensional Dynamic Time Warping

In previous alignment approaches, each element of one feature se-
quence is compared with that of another sequence, which results in
a cost matrix. With three feature sequences, we now extend this
idea to a three dimensional cost tensor, see also Fig 1(a). More pre-
cisely, given the three feature sequences X,Y and Z, we define a
(K × K × L) cost tensor C by C(n,m, `) := c(xn + ym, z`),
where c : F × F → R≥0 denotes a local cost measure on F . For
n 6= m we combine a melody and an accompaniment feature from
different positions in the two score timelines into a single score fea-
ture, which is then compared to the audio feature. In this case, the

difference n −m encodes the asynchrony between the two voices.
In particular, the diagonal plane in the cost tensor (C(n, n, `) for
n ∈ [1 :N ] and ` ∈ [1 :L]) is essentially identical to a cost matrix
between the complete score and the audio as used in classical two-
dimensional DTW. All entries in the cost tensor on planes parallel to
the diagonal plane have the same asynchrony between the two score
voices (i.e. n−m is constant), compare Fig. 2(a).

An alignment between X,Y and Z is defined as a sequence p =
(p1, . . . , pQ) with pq = (nq,mq, `q) ∈[1 :K]×[1 :K]×[1 :L] for
q ∈ [1 :Q] satisfying p1 = (1, 1, 1) and pQ = (K,K,L) as well as
pq+1−pq ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1),
(1, 1, 1)} (step size condition). An alignment through the cost tensor
aligning X,Y and Z is illustrated in Fig 1(a).

The cost of an alignment is defined as
∑Q

q=1 C(nq,mq, `q) and
an alignment having minimal cost among all possible alignments is
called an optimal alignment. To determine such an optimal align-
ment, one can employ MD-DTW [21]. In summary, one recursively
computes a (K×K×L)-tensor D, where the entry D(n,m, `) is the
cost of an optimal alignment between (x1, . . . , xn), (y1, . . . , ym)
and (z1, . . . , z`). Using dynamic programming, this tensor can be
recursively computed as follows:

D(n,m, l) := min



D(n− 1,m, l) + w1 C(n,m, l),

D(n,m− 1, l) + w2 C(n,m, l),

D(n,m, l − 1) + w3 C(n,m, l),

D(n− 1,m− 1, l) + w4 C(n,m, l),

D(n− 1,m, l − 1) + w5 C(n,m, l),

D(n,m− 1, l − 1) + w6 C(n,m, l),

D(n− 1,m− 1, l − 1) + w7 C(n,m, l),

for n,m, l > 1. Furthermore, D(n, 1, 1) :=
∑n

k=1 w1 C(k, 1, 1)
for n > 1, D(1,m, 1) =

∑m
k=1 w2 C(1, k, 1) for m > 1,

D(1, 1, l) =
∑l

k=1 w3 C(1, 1, k) for l > 1, and D(1, 1, 1) :=
C(1, 1, 1). Calculations of entries on the x-y, x-z and y-z planes,
i.e., D(n,m, 1), D(n, 1, l) and D(1,m, l), are equivalent to the
accumulated cost matrix calculation in classical two-dimensional
DTW [21]. The weights (w1, w2, w3, w4, w5, w6, w7) ∈ R7

+ can
be set to adjust the preferences for the seven step sizes. Note that
a bias for any direction is removed by setting these weights to
(w1, w2, w3, w4, w5, w6, w7) = (1, 1, 1, 2, 2, 2, 3). An optimal
alignment is obtained by tracing the minimising argument back-
wards from D(K,K,L) to D(1, 1, 1). Its projections onto the x-z
and y-z planes yield alignments between the melody and the audio
as well as the accompaniment and the audio, respectively. The pro-
jection onto the x-y plane corresponds to an alignment between the
two score voices and thus encodes the estimated local asynchrony
between them, see Fig. 1(b).

2.3. Path Constraints

In principle, an asynchronous alignment could be computed using
MD-DTW as described above. In practice, however, there are ad-
ditional factors which render this approach practically infeasible.
On the one hand, the computational complexity of MD-DTW is
considerable. Assuming the sequences to be aligned are roughly
of the same length L, the memory and time complexity of an
N-dimensional dynamic programming algorithm is O(LN ) and
O(2NLN ), respectively [27]. Since our application requires a high
temporal resolution for the features, the value of L is typically high
and the alignment becomes practically infeasible even for pieces
of average length. On the other hand, splitting the score into two
independent voices results in the number of notes in each voice to
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Fig. 2. Constraining the alignment. (a) Diagonal plane in the cost
tensor corresponding to no asynchrony between voices, surrounded
by two parallel planes corresponding to regions with constant asyn-
chrony. (b) The alignment is contrained to run in a neighbourhood
of a reference alignment, illustrated only on the diagonal plane.

be lower compared to the full score. This becomes a problem, if the
remaining notes do no provide enough information to be discrimina-
tive in time. For example, if a chord is repeated consecutively in the
accompaniment, an asynchronous alignment might easily confuse
one instance of the chord for another, resulting in a substantial align-
ment error. We refer to this issue as the loss-of-structure problem
in the following. Note that previous approaches will not suffer from
this issue if the melody is discriminative enough.

In the following, we describe two extensions to MD-DTW,
which aim at constraining the alignment in a meaningful way. As
we will see, we can not only drastically lower the computational
cost this way but also combine the robustness of previous ap-
proaches with an increased alignment accuracy resulting from our
asynchronous alignment.

Asynchrony Constraints

With the first constraint we account for the observation that asyn-
chronies between musical voices are in practice not arbitrarily high
[14]. Musicians typically employ asynchronies to highlight certain
elements in a piece, and if used in an extreme way, the asynchrony
might render the piece unrecognisable by the audience. To limit the
amount of asynchronies between voices to a musically meaningful
range, we force the alignment to run closely to the diagonal plane
in the cost tensor, compare Section 2.2. More precisely, in order
to compute the diagonal plane features are combined without any
asynchrony between them (n = m as described above), and parallel
planes use a non-zero but constant asynchrony n − m. To imple-
ment a constraint on the asynchrony, we only compute entries in C
and D, for which |n−m| <= A is satisfied, where A ≥ 0 denotes
the maximally allowed asynchrony. All entries not satisfying this
constraint are formally set to infinity. Fig. 2(a) shows the diagonal
plane as well as two parallel planes which satisfy the boundary case
|n−m| = A for a given value of A. Note that, since A is a fixed pa-
rameter, the number of parallel planes is fixed and the computational
complexity is lowered from O(L3) to O(L2). The second constraint
to be described next lowers the complexity even further.

Reference Alignment Constraints

While the main purpose of the simple asynchrony constraint just in-
troduced is to lower the computational complexity, it also affects
the loss-of-structure issue as certain degenerate alignments are au-
tomatically eliminated. However, depending on the value of A, our
asynchronous alignment might still be less robust than previous ap-
proaches. Additionally, the computational costs are still about 2 · A

times higher than classical DTW. Therefore, we now introduce a sec-
ond constraint, which guides the alignment using a reference align-
ment computed using a method based on classical DTW [12]. More
precisely, given a 2D reference alignment p̃ = (p̃1, . . . , p̃R) with
p̃r = (nr, `r), we compute only the entry (n,m, `) in C and D if
there is a p̃r with `r = ` and |nr−n| < B, where B > 0 is the size
of the constraint region. This way, we essentially project the refer-
ence alignment into the 3D cost tensor and use it there to define a
neighbourhood which the alignment is forced to run in, see Fig 2(b)
for an illustration. This approach resembles the general principle
behind multiscale and FastDTW [28, 29], which are methods to ac-
celerate classical DTW.

Overall, since B is fixed, the alignment in now restricted to a
fixed size in a further dimension, which further reduces the compu-
tational complexity from O(L2) to O(L) given the reference align-
ment. Our method to compute the reference alignment employs a
multiscale version of DTW as well, which additionally lowers the
computational cost of the entire system. Furthermore, by limiting
both the allowed asynchrony and the displacement from a reference
alignment effectively mitigates the loss-of-structure problem, which
is demonstrated by our experiments to be discussed next.

3. EXPERIMENTS

3.1. Data Set

The experiments were conducted with recordings of three pieces
which are known to contain strong asynchronies and three pieces
played without asynchrony, to illustrate the performance of our pro-
posed method in both cases. The former three pieces are Chopin
Etude op. 10/3 (first 21 measures), Chopin Prelude op. 28/15 (first
27 measures) and Chopin Nocturne op. 48/1 (first 24 measures). The
other three are picked from Bach’s Well-Tempered Clavier, BWV
848, BWV 849 and BWV 889. The corresponding scores were ob-
tained from the Mutopia project1, the KernScores website2 and the
MuseScore website3 as MIDI files.

For Chopin Etude op. 10/3, we used a data set consisting of
22 performances by skilled pianists recorded on a Bösendorfer
computer-monitored piano, which includes both an audio recording
as well as a corresponding MIDI version for each performance [14].
For the remaining five pieces, we downloaded MIDI versions of
performances from the website of the Minnesota International
Piano-e-Competition4. These MIDI files were recorded on Yamaha
Disklavier Pro pianos during annual competitions for over ten years,
which capture the detailed nuances of the performances. We gener-
ated audio versions from the MIDI files using Native Instruments’s
Vienna Concert Grand VST plugin comprising samples for a Boe-
sendorfer 290 with an uncompressed size of almost 14 GB. The total
number of performances for each piece is given in Table 1.

3.2. Evaluation Measure

To evaluate the accuracy of an alignment, we exploit that each au-
dio recording is accompanied by a performance MIDI file, which
annotates when and which notes are played. By manually aligning
the performance MIDI with the corresponding score MIDI on a note
level, we obtain a ground truth alignment between the audio and the
score. Using the computed alignment, we can then locate for each
note onset in the score the corresponding position in the audio. By

1http://www.mutopiaproject.org
2http://kern.ccarh.org
3http://musescore.org
4http://www.piano-e-competition.com/

591



2D-DTW [12] 3D-DTW

Piece
No.
Rec Mel Acc OA Mel Acc OA

Op. 10/3 22 16 23 21 16 18 (-22%) 17 (-19%)
Op. 28/15 5 16 45 37 16 25 (-44%) 22 (-41%)
Op. 48/1 4 27 64 49 25 56 (-13%) 44 (-10%)

w
/A

sy
n

Average 18 31 27 17 24 (-23%) 22 (-19%)

BWV 848 3 11 14 12 11 14 12
BWV 849 2 21 29 26 21 28 25
BWV 889 2 11 15 13 11 17 14

w
/o

A
sy

n

Average 14 19 16 14 19 16

Table 1. Experimental results for three pieces played with strong
asynchrony (upper) and three pieces without asynchrony (lower).
This table shows the number of performances available and statistics
over the alignment error in milliseconds for the respective pieces.
Both results for the 2D-DTW [12] and our 3D-DTW alignment
method are computed separately for the melody (Mel) and accom-
paniment (Acc). The error values of these two voices are averaged
over the number of notes to get the overall (OA) alignment error.

comparing the positions obtained from the computed and the ground
truth alignment, we get an alignment error for each note. The er-
ror of an alignment is then the average over the differences for all
notes, which we specify in milliseconds. To see the influence of our
method in aligning each voice, we perform separate evaluations on
melody and accompaniment notes and get an overall alignment error
for a score-audio pair by averaging error values of the two voices
over the number of notes.

3.3. Results

We compare the results of our method with a synchronization
method based on classical 2D-DTW [12], which is also used to
generate the 2D reference alignment for our 3D-DTW. To im-
prove comparability, we use the same feature types and cost mea-
sures in the reference and our proposed method. In particular,
we use a temporal resolution of 20 ms for the features. We set
the weights for our 3D-DTW to (w1, w2, w3, w4, w5, w6, w7) =
(1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 3), and the weights for the 2D-DTW to
(w1, w2, w3) = (2, 1.5, 1.5). The maximally allowed asynchrony
between the two voices is set to 15 time frames (300 ms). The size
of the constraint region is set to 50 time frames (1 second) around
the guiding path.

Experimental results are summarized in Table 1. Comparing the
results for the 2D-DTW and our 3D-DTW alignment method for the
three pieces with strong asynchrony, we see that our method mostly
improves the alignment accuracy for the accompaniment part. For
op. 10/3, the overall alignment error for the accompaniment is 22%
lower using 3D-DTW (23ms down to 18ms) while the error for the
melody remains the same on average. The decrease in alignment
error for the accompaniment is even greater for op. 28/15, by 44%
(45ms down to 25ms). For op. 48/1, our 3D-DTW method reduces
the alignment error for the accompaniment by 13%, and slightly for
the melody. A possible explanation for the improvement being lim-
ited to the accompaniment could be that the melody is often played
louder than the rest to emphasize it. This way, the melody dominates
the energy distribution in the features and, not being able to differen-
tiate between the two voices, classical DTW thus tends to focus on
the dominating voice. In contrast, the two score voices are treated
as independent timelines in our 3D-DTW alignment method, which
reduces the local alignment error for the accompaniment. Moreover,
for the three pieces without asynchrony, the average alignment error

Fig. 3. Comparison of the 2D-DTW alignment results with our 3D-
DTW alignment results. The boxplots illustrate the distribution of
the alignment results in milliseconds for each piece separately.

of our proposed method is the same as that of the classical 2D-DTW
alignment.

These results indicate that the improvement in alignment accu-
racy provided by our method depends on the characteristics of the
music piece to be aligned and the amount of asynchrony played in
the performances. That is exactly what we wanted to achieve by
our proposed method, i.e., compensating for the asynchronies be-
tween two voices while preserving both the alignment accuracy of
non-asynchronous parts and the overall alignment robustness.

The overall alignment error for the three pieces with strong asyn-
chrony, drops from 27ms using 2D-DTW alignment to 22 ms using
3D-DTW alignment on average (decreases by 19%). This drop can
also be seen from the boxplots5 in Fig 3, which show the distribution
of the alignment error for all score-audio pairs for the three pieces.
Note that the above results were obtained by separating the melody
and accompaniment notes from the score using the skyline algo-
rithm. Compared with results obtained using a manual separation,
the overall alignment error remained the same on average.

4. CONCLUSION AND FUTURE WORK

In this paper, we introduced a score-audio alignment method that
can compensate for an asynchrony between the melody and accom-
paniment. A 3D-DTW algorithm was employed in which the two
score voices are treated as independent timelines. Further, the align-
ment was constrained by a guiding alignment obtained via a classical
2D-DTW, providing improved robustness and a reduced computa-
tional complexity. Our experiments demonstrated that our proposed
method can indeed improve the alignment accuracy for pieces with
strong asynchrony and preserves the accuracy otherwise, compared
to a previously proposed alignment method using classical DTW.

As a by-product, the resulting alignment can be used to indi-
cate the positions where asynchrony occurs. In initial experiments,
our method achieved a precision of 0.44 and recall of 0.58 on av-
erage in detecting positions with strong asynchrony. In the future,
we plan to further investigate how to improve the performance of
our method in this respect in order to develop an assistive tool for
musical expression analysis. Furthermore, we will also apply multi-
dimensional DTW to different asynchronous data stream alignment
problems, such as the asynchrony between different instruments in a
musical ensemble.

5We use standard boxplots: the red bar indicates the median, the blue box
gives the 25th and 75th percentiles (p25 and p75), the black bars correspond
to the smallest data point greater than p25 − 1.5(p75 − p25) and the largest
data point less than p75+1.5(p75−p25). The red crosses are called outliers.
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random field framework for robust and scalable audio-to-score
matching,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 8, pp. 2385–2397, 2011.

[12] Sebastian Ewert, Meinard Müller, and Peter Grosche, “High
resolution audio synchronization using chroma onset fea-
tures,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Taipei,
Taiwan, 2009, pp. 1869–1872.

[13] Simon Dixon and Gerhard Widmer, “MATCH: A music align-
ment tool chest,” in ISMIR, London, GB, 2005, pp. 492–497.

[14] Werner Goebl, “Melody lead in piano performance: expressive
device or artifact?,” The Journal of the Acoustical Society of
America, vol. 110, pp. 563–572, 2001.

[15] Ning Hu, Roger B. Dannenberg, and George Tzanetakis,
“Polyphonic audio matching and alignment for music re-

trieval,” in Proceedings of the IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA), New
Paltz, NY, USA, 2003.

[16] Nicola Orio and Francois Déchelle, “Score following using
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