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ABSTRACT

This work treats the estimation of the chromagram for har-
monic audio signals using a block sparse reconstruction frame-
work. Chroma has been used for decades as a key tool in
audio analysis, and is typically formed using a Fourier-based
framework that maps the fundamental frequency of a musi-
cal tone to its corresponding chroma. Such an approach often
leads to problems with tone ambiguity, which we avoid by
taking into account the harmonic structure and perceptional
attributes in music. The performance of the proposed method
is evaluated using real audio files, clearly showing preferable
performance as compared to other commonly used methods.

Index Terms— chromagram, block sparsity, total varia-
tion, convex optimization, ADMM

1. INTRODUCTION

Signal processing for audio and music has during the recent
decades experienced a great surge of development, especially
in symbiosis with portable devices and smart phones, offering
solutions for most kinds of audio applications, ranging from
automatic chord transcription and cover song detection to ad-
vanced recommendation systems based on musical similarity
(see, e.g., [1–4]). The vast scope of music genres, ranging
over Western pop music and classical big band orchestras to
Arabic folk music, makes general music signal processing a
daunting task, and as a consequence the scope of the appli-
cations is usually restricted to a certain type of music, most
often Western pop music. When categorizing music, there are
a number of features one may choose to study, where one such
feature is the chroma, which places each tone on a cyclic scale
in order to mirror the perception of the human ear. The appeal
of the chroma for classification is based on that two tones with
substantially different frequency content will sound similar to
the human ear [5]. This implies that any method that classi-
fies audio signals without considering such psychoacoustical
attributes will generally not classify two such tones as being
similar. Today, many algorithms use chroma estimation as a
sub-step to yield a crude estimate of the signal information,
often constituting a key component in applications such as,
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e.g., cover song identification and audio thumbnailing (see,
e.g., [6–8]). Typically, one is often interested in estimating the
chromagram, which is a representation of a signal’s chroma
content over time. There are different ways of constructing
the chromagram, but the basic steps often involve a pitch es-
timation, followed by a mapping to a chroma, which may be
impeded by the largely overlapping spectral content of the
chromas. Examples of such estimators are the one by El-
lis [9], which uses a windowed short-time Fourier transform,
and the one by Müller and Ewert [10], which uses a filter-
bank approach. In this work, we propose a further alternative,
forming the chroma estimate directly from the audio signal
using sparse modeling, adapting the sparse and block sparse
signal representation frameworks introduced in [11] and [12],
to account for the chroma structure. Thus, the signal is rep-
resented using a dictionary of candidate chromas, wherein all
candidate octaves of the musical tone are represented as sets
of harmonically related sinusoids, i.e., as a pitch signal, al-
though without assuming any prior knowledge of the number
of tones present in the signal, nor of the number of harmon-
ics. To promote a chroma sparse solution without misclassi-
fications, we introduce a specific chroma penalty term, which
promotes tones with the expected harmonic spectral content
over tones having only a spurious subset of the estimated har-
monics. As will be shown, this may be accomplished by min-
imizing a sum of convex penalty functions that together will
promote the sought chroma structure, mitigating the inherent
ambiguities in the chroma representation.

Algorithm 1 The proposed CEBS algorithm
1: Initiate z = z(0),u = u(0), and ` := 0
2: repeat
3: z(`) =

(
GHG

)−1
GH

(
u(`) + d(`)

)
4: u(1)(`+ 1) =

y−µ(Wz(`+1)−d(1)(`))
1+µ

5: u(2)(`+1) = Φ̄
(

Ψ
(
z(`+ 1)− d(2)(`), λ2

µ

)
, λ3

√
M

µ
√
12

)
6: u(3)(`+ 1) = Φ

(
Fz(`+ 1)− d(3)(`), λ3

√
M

µ
√
12

)
7: d(`+ 1) = d(`)− (Gz(`+ 1)− u(`+ 1))
8: `← `+ 1
9: until convergence
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Fig. 1. The Ellis log-chromagram for the chord signal.

2. THE HARMONIC SIGNAL MODEL

Consider a noise-free tonal audio signal, such that the complex-
valued1 signal may be modeled as a sum of K distinct pitch
signals, each consisting of Lk harmonically related sinusoids,
i.e.,

x(t) =

K∑
k=1

Lk∑
`=1

ak,`e
i2πfk`t (1)

for t = 1, ..., N , where ak,` denotes the amplitude of the `:th
harmonic in the k:th pitch, and with fk and Lk denoting the
normalized fundamental frequency and the number of sinu-
soids of the k:th source, respectively. The choice of model
is motivated by the fact that most musical instruments pro-
duce sounds which may be well described as a harmonic se-
ries of sinusoids, having integer multiples of a fundamental
frequency. Also, the data is modeled in the time domain, as
this is shown to render more efficient estimates than using the
magnitude short-time fourier transform (STFT) [14]. Because
of the harmonic structure, the human perceptory system does
not perceive the frequencies as being separate, but rather as
a single musical tone. Furthermore, two tones having fun-
damental frequencies at a ratio of 2:1 are perceived as quite
similar, referred to as being octave equivalent. A partial rea-
son for this is that the harmonics of a tone with fundamental
frequency 2f0, i.e., 2f0, 4f0, 6f0, . . . , form a perfect subset
of the harmonics for a tone one octave below. Most Western
music use a cyclic scale divided into twelve semitones within
each octave, spaced by a relative absolute frequency of 21/12.
These twelve tones are not only perceived as distinctly dif-
ferent from each other by our auditory system, but also as
equally spaced, giving credit to the idea that our hearing is
log tempered. The set of all tones being octave equivalent is
called a chroma, with the twelve chromas being

C,C#, D,D#, E, F, F#, G,G#, A,A#, andB (2)

1In order to simplify notation, we here examine the discrete-time analytic
signal version (see, e.g., [13, 14]) of the measured audio signal.
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Fig. 2. The Ellis log-chromagram for the scale signal.

and where the concatenation of a chroma with its octave num-
ber, e.g., A4, forms a musical tone. The fundamental fre-
quency of a tone is thus detailed as

fk = fbase · 2ck/12+ok (3)

where ck and ok are the chroma and octave of pitch k, respec-
tively, and fbase denotes a normalized tuning parameter [2].
As a result, not only do the octaves within a chroma have coin-
ciding harmonics, but so do tones with fundamental frequen-
cies at other ratios, e.g., 3:2 (or nearly so) which is known as
a ”perfect fifth”. Fifths are spaced by seven semitones and
are commonly used together in musical compositions, as the
overlapping spectral content is perceptually pleasant to hear.
To account for this spectral ambiguity of the musicologic sys-
tem, we propose to approximate (1) by an underdetermined
signal model based on both chromas and octaves, taking into
account the harmonic structure of the musical tone, such that

x(t) ≈
11∑
c=0

Omax∑
o=Omin

Lmax∑
`=1

ac,o,`e
i2πfbase2

(c/12+o)`t (4)

where c = 0, . . . , 11 are the twelve semitones ordered as in
(2), and where [Omin, . . . , Omax] indicates the range of oc-
taves considered. Furthermore, Lmax is the maximal number
of harmonics considered, and ac,o,` is the (complex-valued)
amplitude for harmonic ` in the musical tone c, o. From (4),
it is clear that the spectral content is discretized into M =
12(Omax − Omin)Lmax feasible frequencies, grouped within
each octave and chroma. And, as noted above, many of the
harmonics between chromas typically coincide, we deem it
insufficient to simply map individual frequencies to chromas,
as they will likely then also map to several other chromas, too.
Instead, we propose the simultaneous mapping of the whole
set of the tone’s harmonics to a chroma. To this end, let

Ψ =
{{
ac,o,1, . . . , ac,o,Lmax

}
o=Omin,...,Omax

}
c=0,...,11

(5)

be the structure of amplitudes for all possible frequencies in
the chroma model in (4). As the set Ψ is much larger than
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Fig. 3. The Müller and Ewert log-chromagram for the chord.

the actual solution set, most amplitudes, ac,o,`, in (5) will be
equal to zero, i.e., Ψ is sparse. If, for instance, only the key
C#5 is played, then all amplitudes, except a1,5,`, for those `
present in this tone, will be zero.

3. SPARSE CHROMA ESTIMATION

We proceed to detail the proposed chroma estimation proce-
dure, which is formed without any prior knowledge of the
number of tones present in the signal, nor the number of har-
monics in each tone. Denoting the measured (noise-corrupted)
signal y(t), we strive to form the minimization minΨ g1(Ψ),
where the squared model residual g1(Ψ) is defined as

g1(Ψ) =

N∑
t=1

∣∣∣∣∣y(t)−
11∑
c=0

Omax∑
o=Omin

Lmax∑
`=1

ac,o,`e
i2πfbase2

(c/12+o)`t

∣∣∣∣∣
2

(6)

As the number of harmonics in each tone, Lk, is unknown,
we here select Lmax such that Lmax > maxk{Lk}, i.e., large
enough. Clearly, such a minimization will not enforce the
assumed sparsity of the signal, and we therefore impose con-
straints to ensure the sparsity of the solution. As noted in [11],
such a sparse solution may be enforced using the `1-norm,
such that amplitudes corresponding to low spectral power are
set to zero. We thus extend the minimization with a constraint
on

g2(Ψ) =

11∑
c=0

Omax∑
o=Omin

Lmax∑
`=1

|ac,o,`| (7)

which will penalize solutions with many components, thereby
restricting the overall number of estimated amplitudes. Fur-
thermore, due to the presence of the tones’s harmonic struc-
ture, the signal will exhibit a strong group sparsity. To account
for this behavior, reminiscent to [12,15], we further introduce
the penalty
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Fig. 4. The Müller and Ewert log-chromagram for the scale.

g3(Ψ) =
11∑
c=0

√√√√ Omax∑
o=Omin

Lmax∑
`=1

a2c,o,` (8)

which will enforce sparsity for the entire set of amplitudes
within each chroma. It will thus allow us to map the spectral
content of the signal to the most appropriate chroma, nulling
the contribution of ambiguous chromas, despite their partially
overlapping spectral content.

g4(Ψ) =

11∑
c=0

√√√√ Omax∑
o=Omin

Lmax−1∑
`=1

|ac,o,`+1 − ac,o,`| (9)

As formed in (9), the total variation penalty will also penal-
ize non-zero amplitudes at wrong octaves within the chromas,
ensuring an even sparser solution. Thus, in summary, we pro-
pose to estimate the chomas present in the observed signal by
the (convex) minimization

Ψ̂ = arg min
Ψ

4∑
i=1

λigi(Ψ) (10)

where λ1 = 1, and λi, for i = 2, 3, 4, are user-defined sparse
regularizers which weigh the importance between each penalty
function and the squared residual. To simplify notation, let

y =
[
y(1) ... y(N)

]T
(11)

=

11∑
c=0

Wc ac + e , Wa + e (12)

where (·)T denotes the transpose, and

W =
[

W0 . . . W11

]T
(13)

Wc =
[

wOmin
c . . . wOmax

c

]T
(14)

wc =
[

z1 . . . zLmax
]T

(15)
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Fig. 5. The CEBS log-chromagram for the chord signal.

zc =
[
ei2π2

c/121 . . . ei2π2
c/12N

]T
(16)

ac =
[

aTc,Omin
. . . aTc,Omax

]T
(17)

ac,o =
[
ac,o,1 . . . ac,o,Lmax

]T
(18)

Thus, the block dictionary W ∈ CN×M , where M denotes
the number of possible frequencies, has twelve blocks of chroma,
such that each chroma is a block of (Omax−Omin) tones, with
every tone, in turn, a block of Lmax column Fourier vectors.
This allows (10) to be expressed as

â = arg min
a

4∑
i=1

gi(Hia, λi) (19)

where H1 = W, H2 = H3 = I, H4 = F, and

g1(Wa, 1) = ||y −Wa||22 (20)
g2(a, λ2) = λ2 ||a||1 (21)

g3(a, λ3) = λ3

11∑
c=0

||ac||2 (22)

g4(Fa, λ4) = λ4 ||Fa||1 (23)

where I denotes the identity matrix, and where F is the first
order difference matrix, having elements Fi,i = 1 and Fi,i+1 =
−1, for 1, . . . ,M/12 − 1, and zeros elsewhere. As the min-
imization in (19) is convex, it may be solved using one of
the freely available interior-point based methods, such as Se-
DuMi [16] or SDPT3 [17], although it may be noted that these
will scale poorly with increasing data length. Inspired by the
results in [12], we here introduce a computationally efficient
implementation based on the alternating direction of multi-
pliers method (ADMM), see e.g., [17]. In broad terms, the
ADMM framework can be used to solve convex optimization
problems composed of a sum of two convex functions by in-
troducing an auxiliary variable u so that the optimization can
be split into two simpler independent sub-problems that are
solved in an iterative fashion. Using the extension to a sum
of several convex functions (see also [18]), we propose the
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Fig. 6. The CEBS log-chromagram for the scale signal.

Chroma Estimation using Block Sparsity (CEBS) algorithm,
as given in Algorithm 1, where µ is an inner convergence vari-
able, d a dual variable, and

G =
[

W, I, F
]

(24)

u =
[

u(2)T , u(3)T , u(3)T
]T

(25)

d =
[

d(2)T , d(3)T , d(3)T
]T

(26)

Φ (x, ξ) =
max(|x| − ξ, 0)

max(|x| − ξ, 0) + ξ
� x (27)

Φ̄ (x, ξ) =
max(||x||2 − ξ, 0)

max(||x||2 − ξ, 0) + ξ
x (28)

such that the solution is given as â = z(`end).

4. NUMERICAL RESULTS

We proceed to examine the performance of the proposed al-
gorithm, comparing with the (publicly available) estimators
in [9, 10], using two audio signals from [19], namely a two
channels FM-violin playing a middle C scale (all tones from
C4 to C5) and a C-major chord, both in equal temperament,
sampled at fs = 22050 Hz, mixed to a single channel us-
ing the method in [10]. Figures 1-6 illustrate the resulting
log-chromagrams for the Ellis, the Müller and Ewert, and the
CEBS estimators. We have here divided the signal in seg-
ments of length N = 1024 samples (about 46 ms), having an
overlap of 50%. For CEBS, we set λ2 = 0.05, λ3 = 2.3,
and λ4 = 0.1, which are chosen using some simple heuris-
tics from the FFT (see, e.g., [12]). The tuning frequency is
here set to fbase = 440, and results remains quite unchanged
at ±3 Hz. A more thorough sensitivity analysis of this pa-
rameter is beyond the scope of this work. Clearly, the CEBS
estimator yields a preferable estimate, suffering from notice-
ably less leakage and spurious estimates. As can be seen in
Figure 6, the algorithm may make some misclassifications at
the onset of a new tone, due to the non-stationary nature and
weakness of the signal in these frames; this may easily be
mitigated by adding a post-processing with a lowpass filter.
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