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ABSTRACT The originality of this work is that it offers a novel audicafe
In this paper, we present a temporal entropy-based indicatéure that assigns a given audio signal a "texturedness’level
that reflects the texturedness level of a given audio signal. over a quantified O to 5 scale. This audio texturedness indi-
spired from an image homogeneity evaluation via a multidicator is inherently dependant of several auditory pararsiete
rectional cumulative entropy computation, we similarlppr the listening time duration, the basic analysis frame sine,
pose an audio signal homogeneity analysis through a diretite feature used in capturing the information content of the
and reverse progressive auditory information contenktrac audio signal.
ing. A [0 - 5] texturedness indicator is then constructed usThis paper is organized as follows: in section 2, we present
ing auditory-inspired parameters, and is inherently dased¢  the entropy-based homogeneity tracking method for image
with short listening time. Using this indicator, a new audioand we show how we adapt it for audio signals. Section 3
signals classification is proposed where speech signatsare presents the design steps of the proposed audio textusednes
signed low texturedness scores, and academic noise signéiélicator based on the direct and reverse temporal entropy
are assigned the higher range of texturedness scoresi-Clagdhalysis of section 2. The relevance of each of the design pa-
cally known audio textures are assigned, in this scalepuari rameters in the proposed audio texturedness indicatosds al
intermediate to high texturedness scores. discussed. In section 4, the texturedness indicator reatst
presented and discussed. Finally, Section 5 discussen-the i
* dicator performance results and presents some perspecfive
this work.

Index Terms— Audio textures, texturedness indicator
short listening time, direct and reverse progressive aogit
information, cumulative entropy.

2. CUMULATIVE DIRECT AND REVERSE
1. INTRODUCTION ENTROPY FOR AUDIO SIGNAL HOMOGENEITY
TRACKING
Recently, the concept of audio texture has emerged as a key
audio analysis feature [1-2]. It has been mainly proposed a# contrast with audio signal processing, image processing
a tool in multimedia audio background synthesis [3-6], auas witnessed many advances in texture-based image analy-
dio stream segmentation and restoration, and environinentsis, where the task of texture discrimination was basedwn se
soundscape analysis [7-9]. However, signal processirly stueral features, such as local energy, contrast pixel cdivala
ies on the relationship between the concept of audio textur@o-occurrence matrices) and entropy (see [10-11]).
and the large field of audio features extraction remain ndit we
establls_hed..lndeed, audio signals are usually reqogaudd .2.1. Multidirectional cumulative entropy tracking for im-
categorized into the large classes of speech, music, asd.noi .
. . S age texture homogeneity assessment
In this work, we argue how an arbitrary audio signal can be
analyzed over a new continuum of audio signal "texturedA four-directional entropy tracking in image similaritiasd
ness” content level. For that, we propose an indicator thaitructures identifying corresponds to a quick image seapni
evaluates the texturedness degree of audio signals irtherencapturing therefore the image homogeneity degree. In Figl,
related to its information content dynamics. This indicato we illustrate this entropy tracking process applied to tifo d
was constructed using a cumulative entropy-based tecaniquferent images : (a) sand image [12], which is highly textured
originally intended for image homogeneity analysis and texand (b) cameraman image which is non-textured. This pro-
ture discrimination, which we here adapted to audio signalsess consists of a cumulative computing of the spatial ptro

This work is a part of a Tunisian-French inter-disciplinapyoject as follows: ) ) )
(CMCU- PHC UTIQUE project N 23242VJ) - from each corner of the image a (x N) analysis window
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is used to progressively scan the image. At each &tépe
grey level entropy is evaluated through the analysis windov
that increases in sizé.(N x N)) until covering totally the
image quarter from the considered corner to the image cent
(see fig 1 (a)).

- using the obtained entropy values from each directiomor
four cumulative entropy curves, denotdd, are obtained (see
fig 1 (c) and (d)).

One can notice that the less textured the image is, the furthé
apart are the resulting four entropy curves as illustrated i
fig 1 (c) and (d). Therefore, a similarity analysis between @)
the multidirectional cumulative entropy plots could bedise ¢ ‘ s
as a basis for examining the image level of homogeneity an , I
therefore its “texturedness” level.

Several computational and perceptually inspired paramsete *
are considered in this texturedness level evaluation; iitigpa 5‘5
ular the basic analysis window size with respect to the sizi

of the overall image, the increasing analysis window at eac * :ﬂ;‘:;‘m

step, the choice of the underlying analysis feature, and th 3 [ (|
similarity measure used to assess the obtained homogene

evaluation along the different directions. TrUvsnnue R ABBNL T A s 0RUBRNZABADY
Frame index Frame index

() (d)

—down eft
= down right

Entropy

2.2. Direct and reverse cumulative entropy evaluation in

audio signals Fig. 1. Multidirectional cumulative entropy plotsH.) of (a) tex-
tured image of sand, and (b) non textured image of camerainan.

In an analogous manner, the audio signal homogeneity cofc) 7. of the image (a), and in (djl. of image (b). Image size

tent can be examined via a similar progressive entropy {rackse x 256, basic analysis window (frame) sigex 8.

ing in a direct and reverse directions (see fig 2). In fact,whe

listening to an audio signal in “normal” (forward) direatio

then listening to the same signal in a reverse time (backward Progressive framing of lengtif; is applied on: andz,. (as

direction, one can notice that the more the signal is “teedty ~ Shown in figure 2), where € {1,2,....n} is the step index,

the less differences are perceived by the human ear. Where@Rdny = Tous /Ty represents the number of frames which is

when the sound contains perceptible changes in its inform&/S0 equal to the total number of framing steps.

tional content over time, the resulting direct and reveise | Atthei, step, atemporal entropy measiif¢i) is computed

tening are quite different, which is for instance the case obY: M

speech signals. H(i) = (i, j)log(

This direct and reverse listening to the audio signal hasesom j=1

auditory attention basis as well. Itis worth noting, thatesal

analysis studies in cognitive restoration of reversed dpee

showed that the intelligibility is not greatly affected asg

as the basic frame size does not exce@as (see for exam-

1
h(i, j)

) )

This temporal entropy formulation is based on the normellize
histogram of the signal amplitudési, j) which we consider
here as an approximation of amplitudes probability density
h(i,4) is given by:

ple [13-14]).
In addition to the proposed bidirectional audio analysie, w — o h(i,g)
consider some computational and auditory parameters such h(i, j) = iN ©)

as the observation time corresponding to the listening time
and the analysis frame size. As analysis feature we propose whereh(i, j) is the updated amplitudes histogram com-
the use of temporal entropy measure which is a mathemati&uted at the’” analysis step, and € {1,2,3,..., M} refers
quantity that captures all the audio amplitudes statistics {5 the |evel index in the\/ quantification levels of the signal
Let z(t) be the audio signal observed over a time d”ratio'hmplitudes. In equation 3,(i, j) is normalized by the total
Tobs, a.nd its corresponding reverse signal denotedfly),  nymper of signal samples at the sie@nd N refers to the
where: 20 (t) = 2(Tops — 1), £ € [0, Tops]. (1)  humber of audio samples ify.

When applied tar and z,., this proposed temporal entropy
The audio signat(t) is sampled af’s sampling rate and con- measure allows to construct their cumulative entropy curve
tainsV samples. Once the analysis frame leriifhis fixed,  denoted respectivelff; and H, curves. Figure 3 shows the
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Fig. 2. Audio signal framing for cumulative entropy computation of Fig. 3. Importance of the surface aréa(hatched) between the cu-
(a) direct audio signat(t), and (b) its reverse versian.(t). Speech  muylative direct (solid line) and reverse (dotted line) ept curves,
signal with 2s duration, 16kHz sampling frequency, inciregframe  and the texturedness indicator design parametsTops, Hy ey,
size analysis. Hpmaz, Hr,,,, andTy.,. Five audio examples with different tex-
turedness properties: uniform white noise (black), sineafgreen),
soft rain sound (blue), typing machine sound (dark greenyl a
bidirectional cumulative entropy results for five audiorsifs leadership speech (red). Signals duratibp, = 5s, frame size
with different texturedness levels. We notice that for ther; = 20ms, number of amplitudes levels for entropy computation
uniform white noise and the rain signalg,; and H,. plots M = 50.
are very close to each other. However for less textured audio
signals, the curves are distant, which could clearly be se
for the considered speech signal.
The obtained surface area between the direct and reverse
tropy curves differs widely depending on the nature of th
signal. This surface, designated Byallows to visually dis-
tinguish two very separable classes: highly textured audid’”
and highly non textured audio. This surface afewill then Siex
be used as a key parameter in the evaluation of audio signals Pr=173
texturedness degree.
We also noticed that the final entropy value denated, ,  WhereSic; = Tyex.Hpnao. The parametef., is a "textured-
which expresses the overall signal entropy value, usualljess time” that expresses the time duration after witigh
tends to decrease from a maximum value obtained for thandH, curves merge to the same final value, within a margin

uniform noise to lower values for highly non-stationary mud ¢ such that% <0.
signals, such as speech. - pref IS @ normalizing area ratio related to the "final” surface

to that of the reference signal, given by:

®Phe surfaces is first normalized bySimaz = Tobs-Hmaz
é/:/qt]ich represents the extreme maximum value thatould
feach durin@obs; Hppaz = maXi€{1,2,.471f}(Hd(i)7 HT(Z)) is
&he maximum value reached By, or H,..

is a normalizing area ratio given by

(6)

max

3. THE AUDIO TEXTUREDNESS INDICATOR pref = St )
DESIGN S.

ref

}NhereST“bs = Hrp,,, Tops @aNdS,cr = Hyep . Tops-
H,.r is the entropy value of the selected reference audio
signal adopted in this study which is the uniform white noise
When the signal amplitudes are quantized into M levels, the
reference entropy is thef,.; = log M. Entropy is maximal
), 4) for such signal since all of its quantized amplitudes vahres
Smaz equally present resulting in a maximum of uncertainty and
supposed to induce a high surprise effect.
- K is a scaling constant which we assigned the value 5 for
a perceptual texturedness level indicator scalingoir- 5]
range, similar to PESQ (Perceptual Evaluation of Speech

N Quality), usually adopted in survey responses ranges [15],
S =T, Z \Hy(i) — H, (i), (5) and the subjective Likert scale for attitudes measure [16].

Our approach relies on a graphical representation of tha ma
parameters which we represent through different surfasasar
of the cumulative temporal entropy tracking plots (see ggur
3). The proposed indicatdg... is given by:

Item = K-Pref[l — pT(

where :
- S is the main parameter, defined as the area delimited by
andH, curves, and is given by:

i=1
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Relevance ofl;.,. terms : discussion

T T onifornt

- TSM normalizes the surfacg to the the maximum sur- Py T anhon 4 6T
face value obtained for the most non textured signal havin e s ,':W brown noiey
S = Syae. It partially classifies all signals sharing the same il T T R
Hmae and compares them to the same reference of highl i seeseab 0 St

non textured signal. In case of highly textured audio signa €’ e S S

S — 0 thenz®— — 0, whereas for the highly non textured 2 gg Rooseet o it 0 ;;

signalS — Sy,qz resulting ing>— — 1. 22 O g i bbb

-p, allows the comparison between two audio signals tha Ler EM one B

differ only by theirT;., values. Usindl}... the p, ratio com- o e 1
pares audio Signa|s "texturedness Speed" for a gﬂi&g Y17 14 16 18 2 22 24 28 z.‘le é(353)‘.2 37 36 35 4 42 41 46 48 5
Therefore a smalll}.,. indicates that the audio signal has tex

quickly became textured, which is the case of highly tex-_. . . e
tured signal, whereas a high value®f,, indicates that the Fig. 4. A preliminary I_m indicator classm_catlon |n_to three large
signal is rather less textured. For highly non texturedalign overlapping groups using K-means Clusmm.]g algoritiy., = 35

' . and7,s = 65, frame size0ms, number of bins\/ = 50.
Tiex — Tops, thenp, — 1, whereas for a highly textured
signalT;., — 0thenp, — 0.
- prey Performs a comparison with a reference signal whichess scale, whereas speech class had low texturedness score
is the most textured audio signal having the highest entropsind is then the least textured class. Classically knownoaudi
value H,.¢. This ratio compares the stabilization final en-textures had, in their turn, high to middle texturednesseesg)
tropy value Hr,,_ to that of the reference signal. In case (see for example rain and group applause). For different sho
of highly non textured signals,,, — 0, thenp,.; — 0, listening time, textured and highly textured audio sigmaés
whereas in case of a highly textured sigiét,, — H,.r  serve approximately the same texturedness value wheraas no

resulting inpycy — 1. textured audio signals such as speech present differargwval
due to their non stationary properties.
Special cases: A robustness study has also been performed through small

- The uniform (white) noise: is the reference audio signal fo variations on its auditory parametéfs,; and7y has shown
the texturedness indicator which has the highest and invargood performances [18].

ant entropy value. For this audio signal surfaéte= 0 then In the time range of few seconds (3s to 6s), which is linked
TST = 0, andTi.,; = 0thenp, = 0. In additionp,.;f =1  to the human short term auditory memory capacity [19-20],
resulting inl;., = 5. the classification ability of,..., as a new audio feature, for-

- A highly non textured audio: speech with non decreasingnally offers the class of relative audio texture signalss di
temporal entropy variations which is a non stationary dignatinguished position on thito 5 scale that lies between basic
presents large entropy variability captured by a largeaserf noise and speech/music. Therefore this new audio textured-
S. Theoretically for an extremely high non textured audioness feature is in alinement with human “fuzzy” yet natural
signalS = Sy @and Ty, = Tops thenp, = 1, resulting in - classification abilities.

Ttex = 0.

5. CONCLUSION
4. AUDIO SIGNALS: A CONTINUUM OVER A
"TEXTUREDNESS SCALFE”" In this paper, we have proposed an auditory-inspired audio
texturedness indicator which evaluates the texturedness d

The developed;., indicator has been tested on a large segree of a given audio signal on0ato 5 scale. This novel in-
of audio signals including academic signals (uniform whitedicator is based on cumulative entropy tracking in the direc
noise, pink noise, sine...), natural sounds ( rain, firelerac and reverse listening directions of the signal. Prelimimar
ling...), mechanical sounds (bells, train horn...), huraeg-  sults on a large set of audio signals containing variousaaudi
inating audio signals (group applause, crowd cheering, mazategories were presented. These results showed a new au-
tivational speeches...), rhythmic sounds (music, singdr-w dio classification scale for the audio continuum in which-aca
out music), and campus restaurant sound ambiances record#d®mic noise are on the top, then we find intermediate sounds
at different moments of the day for different attendees numwith relative texturedness degrees. Low texturednesssalu
bers [17]. The behavior of the texturedness indicdipf ~ were obtained in speech signals cases.
for two different observation time durationg,,s = 3s and  In support of this indicator, a subjective study was inétto
T.»s = 6s, is graphically represented in figure 4. assess some perceptual parameters through the evalugtion o
As expected, the academic noise signals obtained high tetie texturedness level in audio signals related to thenkste
turedness scores and then are found on the top of the texturédpontaneous” scoring.
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