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ABSTRACT
In this paper, we present a temporal entropy-based indicator
that reflects the texturedness level of a given audio signal.In-
spired from an image homogeneity evaluation via a multidi-
rectional cumulative entropy computation, we similarly pro-
pose an audio signal homogeneity analysis through a direct
and reverse progressive auditory information content track-
ing. A [0 - 5] texturedness indicator is then constructed us-
ing auditory-inspired parameters, and is inherently associated
with short listening time. Using this indicator, a new audio
signals classification is proposed where speech signals areas-
signed low texturedness scores, and academic noise signals
are assigned the higher range of texturedness scores. Classi-
cally known audio textures are assigned, in this scale, various
intermediate to high texturedness scores.

Index Terms— Audio textures, texturedness indicator,
short listening time, direct and reverse progressive auditory
information, cumulative entropy.

1. INTRODUCTION

Recently, the concept of audio texture has emerged as a key
audio analysis feature [1-2]. It has been mainly proposed as
a tool in multimedia audio background synthesis [3-6], au-
dio stream segmentation and restoration, and environmental
soundscape analysis [7-9]. However, signal processing stud-
ies on the relationship between the concept of audio texture
and the large field of audio features extraction remain not well
established. Indeed, audio signals are usually recognizedand
categorized into the large classes of speech, music, and noise.
In this work, we argue how an arbitrary audio signal can be
analyzed over a new continuum of audio signal ”textured-
ness” content level. For that, we propose an indicator that
evaluates the texturedness degree of audio signals inherently
related to its information content dynamics. This indicator
was constructed using a cumulative entropy-based technique,
originally intended for image homogeneity analysis and tex-
ture discrimination, which we here adapted to audio signals.

This work is a part of a Tunisian-French inter-disciplinaryproject
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The originality of this work is that it offers a novel audio fea-
ture that assigns a given audio signal a ”texturedness level”
over a quantified 0 to 5 scale. This audio texturedness indi-
cator is inherently dependant of several auditory parameters:
the listening time duration, the basic analysis frame size,and
the feature used in capturing the information content of the
audio signal.
This paper is organized as follows: in section 2, we present
the entropy-based homogeneity tracking method for image
and we show how we adapt it for audio signals. Section 3
presents the design steps of the proposed audio texturedness
indicator based on the direct and reverse temporal entropy
analysis of section 2. The relevance of each of the design pa-
rameters in the proposed audio texturedness indicator is also
discussed. In section 4, the texturedness indicator results are
presented and discussed. Finally, Section 5 discusses the in-
dicator performance results and presents some perspectives of
this work.

2. CUMULATIVE DIRECT AND REVERSE
ENTROPY FOR AUDIO SIGNAL HOMOGENEITY

TRACKING

In contrast with audio signal processing, image processing
has witnessed many advances in texture-based image analy-
sis, where the task of texture discrimination was based on sev-
eral features, such as local energy, contrast pixel correlation
(co-occurrence matrices) and entropy (see [10-11]).

2.1. Multidirectional cumulative entropy tracking for im-
age texture homogeneity assessment

A four-directional entropy tracking in image similaritiesand
structures identifying corresponds to a quick image scanning,
capturing therefore the image homogeneity degree. In Fig1,
we illustrate this entropy tracking process applied to two dif-
ferent images : (a) sand image [12], which is highly textured,
and (b) cameraman image which is non-textured. This pro-
cess consists of a cumulative computing of the spatial entropy
as follows:
- from each corner of the image an (N ×N ) analysis window
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is used to progressively scan the image. At each stepi, the
grey level entropy is evaluated through the analysis window
that increases in size (i.(N × N)) until covering totally the
image quarter from the considered corner to the image center
(see fig 1 (a)).
- using the obtained entropy values from each direction/corner,
four cumulative entropy curves, denotedHc, are obtained (see
fig 1 (c) and (d)).
One can notice that the less textured the image is, the further
apart are the resulting four entropy curves as illustrated in
fig 1 (c) and (d). Therefore, a similarity analysis between
the multidirectional cumulative entropy plots could be used
as a basis for examining the image level of homogeneity and
therefore its “texturedness” level.
Several computational and perceptually inspired parameters
are considered in this texturedness level evaluation; in partic-
ular the basic analysis window size with respect to the size
of the overall image, the increasing analysis window at each
step, the choice of the underlying analysis feature, and the
similarity measure used to assess the obtained homogeneity
evaluation along the different directions.

2.2. Direct and reverse cumulative entropy evaluation in
audio signals

In an analogous manner, the audio signal homogeneity con-
tent can be examined via a similar progressive entropy track-
ing in a direct and reverse directions (see fig 2). In fact, when
listening to an audio signal in “normal” (forward) direction,
then listening to the same signal in a reverse time (backward)
direction, one can notice that the more the signal is “textured”,
the less differences are perceived by the human ear. Whereas
when the sound contains perceptible changes in its informa-
tional content over time, the resulting direct and reverse lis-
tening are quite different, which is for instance the case of
speech signals.
This direct and reverse listening to the audio signal has some

auditory attention basis as well. It is worth noting, that several
analysis studies in cognitive restoration of reversed speech
showed that the intelligibility is not greatly affected as long
as the basic frame size does not exceed50ms (see for exam-
ple [13-14]).
In addition to the proposed bidirectional audio analysis, we
consider some computational and auditory parameters such
as the observation time corresponding to the listening time
and the analysis frame size. As analysis feature we propose
the use of temporal entropy measure which is a mathematic
quantity that captures all the audio amplitudes statistics.
Let x(t) be the audio signal observed over a time duration
Tobs, and its corresponding reverse signal denoted byxr(t),
where:

xr(t) = x(Tobs − t), t ∈ [0, Tobs]. (1)

The audio signalx(t) is sampled atTs sampling rate and con-
tainsN samples. Once the analysis frame lengthTf is fixed,

(a) (b)

(c) (d)

Fig. 1. Multidirectional cumulative entropy plots (Hc) of (a) tex-
tured image of sand, and (b) non textured image of cameraman.In
(c) Hc of the image (a), and in (d)Hc of image (b). Image size
256× 256, basic analysis window (frame) size8× 8.

a progressive framing of lengthiTf is applied onx andxr (as
shown in figure 2), wherei ∈ {1, 2, ....nf} is the step index,
andnf = Tobs/Tf represents the number of frames which is
also equal to the total number of framing steps.
At the ith step, a temporal entropy measureH(i) is computed
by:

H(i) =

M∑

j=1

h(i, j) log(
1

h(i, j)
) (2)

This temporal entropy formulation is based on the normalized
histogram of the signal amplitudesh(i, j) which we consider
here as an approximation of amplitudes probability density.
h(i, j) is given by:

h(i, j) =
h(i, j)

i.Nf

(3)

whereh(i, j) is the updated amplitudes histogram com-
puted at theith analysis step, andj ∈ {1, 2, 3, ...,M} refers
to the level index in theM quantification levels of the signal
amplitudes. In equation 3,h(i, j) is normalized by the total
number of signal samples at the stepi; andNf refers to the
number of audio samples inTf .
When applied tox andxr , this proposed temporal entropy
measure allows to construct their cumulative entropy curves
denoted respectivelyHd andHr curves. Figure 3 shows the
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Fig. 2. Audio signal framing for cumulative entropy computation of
(a) direct audio signalx(t), and (b) its reverse versionxr(t). Speech
signal with 2s duration, 16kHz sampling frequency, increasing frame
size analysis.

bidirectional cumulative entropy results for five audio signals
with different texturedness levels. We notice that for the
uniform white noise and the rain signals,Hd andHr plots
are very close to each other. However for less textured audio
signals, the curves are distant, which could clearly be seen
for the considered speech signal.
The obtained surface area between the direct and reverse en-
tropy curves differs widely depending on the nature of the
signal. This surface, designated byS, allows to visually dis-
tinguish two very separable classes: highly textured audio
and highly non textured audio. This surface areaS will then
be used as a key parameter in the evaluation of audio signals
texturedness degree.
We also noticed that the final entropy value denotedHTobs

,
which expresses the overall signal entropy value, usually
tends to decrease from a maximum value obtained for the
uniform noise to lower values for highly non-stationary audio
signals, such as speech.

3. THE AUDIO TEXTUREDNESS INDICATOR
DESIGN

Our approach relies on a graphical representation of the main
parameters which we represent through different surface areas
of the cumulative temporal entropy tracking plots (see figure
3). The proposed indicatorItex is given by:

Itex = K.ρref [1− ρτ .(
S

Smax

)], (4)

where :
- S is the main parameter, defined as the area delimited byHd

andHr curves, and is given by:

S = Tobs.

nf∑

i=1

|Hd(i)−Hr(i)|, (5)
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Fig. 3. Importance of the surface areaS (hatched) between the cu-
mulative direct (solid line) and reverse (dotted line) entropy curves,
and the texturedness indicator design parameters:Tf , Tobs, Href ,
Hmax, HTobs

, andTtex. Five audio examples with different tex-
turedness properties: uniform white noise (black), sine wave(green),
soft rain sound (blue), typing machine sound (dark green), and
leadership speech (red). Signals durationTobs = 5s, frame size
Tf = 20ms, number of amplitudes levels for entropy computation
M = 50.

The surfaceS is first normalized bySmax = Tobs.Hmax

which represents the extreme maximum value thatS could
reach duringTobs; Hmax = maxi∈{1,2,..nf}(Hd(i), Hr(i)) is
the maximum value reached byHd orHr.
-ρτ is a normalizing area ratio given by

ρτ =
Stex

Smax

(6)

whereStex = Ttex.Hmax. The parameterTtex is a ”textured-
ness time” that expresses the time duration after whichHd

andHr curves merge to the same final value, within a margin
θ such thatStex

Smax
≤ θ.

- ρref is a normalizing area ratio related to the ”final” surface
to that of the reference signal, given by:

ρref =
STobs

Sref

(7)

whereSTobs
= HTobs

.Tobs andSref = Href .Tobs.
Href is the entropy value of the selected reference audio
signal adopted in this study which is the uniform white noise.
When the signal amplitudes are quantized into M levels, the
reference entropy is thenHref = logM . Entropy is maximal
for such signal since all of its quantized amplitudes valuesare
equally present resulting in a maximum of uncertainty and
supposed to induce a high surprise effect.
- K is a scaling constant which we assigned the value 5 for
a perceptual texturedness level indicator scaling in[0 − 5]
range, similar to PESQ (Perceptual Evaluation of Speech
Quality), usually adopted in survey responses ranges [15],
and the subjective Likert scale for attitudes measure [16].
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Relevance ofItex terms : discussion
- S

Smax
normalizes the surfaceS to the the maximum sur-

face value obtained for the most non textured signal having
S = Smax. It partially classifies all signals sharing the same
Hmax and compares them to the same reference of highly
non textured signal. In case of highly textured audio signal
S → 0 then S

Smax
→ 0, whereas for the highly non textured

signalS → Smax resulting in S
Smax

→ 1.
-ρτ allows the comparison between two audio signals that
differ only by theirTtex values. UsingTtex theρτ ratio com-
pares audio signals ”texturedness speed” for a givenTobs.
Therefore a smallTtex indicates that the audio signal has
quickly became textured, which is the case of highly tex-
tured signal, whereas a high value ofTtex indicates that the
signal is rather less textured. For highly non textured signal
Ttex → Tobs, thenρτ → 1, whereas for a highly textured
signalTtex → 0 thenρτ → 0.
- ρref performs a comparison with a reference signal which
is the most textured audio signal having the highest entropy
valueHref . This ratio compares the stabilization final en-
tropy valueHTobs

to that of the reference signal. In case
of highly non textured signalHTobs

→ 0, thenρref → 0,
whereas in case of a highly textured signalHTobs

→ Href

resulting inρref → 1.

Special cases:
- The uniform (white) noise: is the reference audio signal for
the texturedness indicator which has the highest and invari-
ant entropy value. For this audio signal surfaceS = 0 then

S
Smax

= 0, andTtex = 0 thenρτ = 0. In additionρref = 1
resulting inItex = 5.
- A highly non textured audio: speech with non decreasing
temporal entropy variations which is a non stationary signal
presents large entropy variability captured by a large surface
S. Theoretically for an extremely high non textured audio
signalS = Smax andTtex = Tobs thenρτ = 1, resulting in
Itex = 0.

4. AUDIO SIGNALS: A CONTINUUM OVER A
”TEXTUREDNESS SCALE”

The developedItex indicator has been tested on a large set
of audio signals including academic signals (uniform white
noise, pink noise, sine...), natural sounds ( rain, fire crack-
ling...), mechanical sounds (bells, train horn...), humanorig-
inating audio signals (group applause, crowd cheering, mo-
tivational speeches...), rhythmic sounds (music, singer with-
out music), and campus restaurant sound ambiances recorded
at different moments of the day for different attendees num-
bers [17]. The behavior of the texturedness indicatorItex
for two different observation time durations,Tobs = 3s and
Tobs = 6s, is graphically represented in figure 4.
As expected, the academic noise signals obtained high tex-
turedness scores and then are found on the top of the textured-
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Fig. 4. A preliminary Itex indicator classification into three large
overlapping groups using K-means clustering algorithm.Tobs = 3s
andTobs = 6s, frame size20ms, number of binsM = 50.

ness scale, whereas speech class had low texturedness scores
and is then the least textured class. Classically known audio
textures had, in their turn, high to middle texturedness degrees
( see for example rain and group applause). For different short
listening time, textured and highly textured audio signalspre-
serve approximately the same texturedness value whereas non
textured audio signals such as speech present different values
due to their non stationary properties.
A robustness study has also been performed through small
variations on its auditory parametersTobs andTf has shown
good performances [18].
In the time range of few seconds (3s to 6s), which is linked
to the human short term auditory memory capacity [19-20],
the classification ability ofItex, as a new audio feature, for-
mally offers the class of relative audio texture signals a dis-
tinguished position on this0 to 5 scale that lies between basic
noise and speech/music. Therefore this new audio textured-
ness feature is in alinement with human “fuzzy” yet natural
classification abilities.

5. CONCLUSION

In this paper, we have proposed an auditory-inspired audio
texturedness indicator which evaluates the texturedness de-
gree of a given audio signal on a0 to 5 scale. This novel in-
dicator is based on cumulative entropy tracking in the direct
and reverse listening directions of the signal. Preliminary re-
sults on a large set of audio signals containing various audio
categories were presented. These results showed a new au-
dio classification scale for the audio continuum in which aca-
demic noise are on the top, then we find intermediate sounds
with relative texturedness degrees. Low texturedness values
were obtained in speech signals cases.
In support of this indicator, a subjective study was initiated to
assess some perceptual parameters through the evaluation of
the texturedness level in audio signals related to the listeners
“spontaneous” scoring.
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