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ABSTRACT

The geometry of room acoustics is such that the reverberant
signal can be seen as the same waveform emitted from multiple
locations. In analogy with the rake receiver from wireless com-
munications, we propose several beamforming strategies that
exploit, rather than suppress, this additional spatio-temporal di-
versity. Unlike earlier work in the frequency domain, time do-
main designs allow to shape the impulse response of the beam-
former. In particular, we can control perceptually relevant pa-
rameters, such as the amount of early echoes or the length of
the beamformer response.

Relying on the knowledge of the image sources positions,
we derive different optimal beamformers. Leveraging percep-
tual cues, we show how to improve interference and noise re-
duction without degrading the perceptual quality. The designs
are validated through simulation. Using early echoes is shown
to strictly improve the signal to interference and noise ratio.
Code and speech samples are available online at http://
lcav.epfl.ch/Robin_Scheibler.

Index Terms— Beamforming, acoustic rake receiver, time
domain, precedence effect, room geometry.

1. INTRODUCTION

Rake receivers for wireless communication exploit the temporal
diversity of the multipath fading channel to increase the signal-
to-noise ratio (SNR) [1]. The technique extends to arrays of
antennas [2, 3]. One can imagine using a similar approach in
acoustics, exploiting echoes in a reverberant room to improve
the SNR. Indeed, such techniques have been proposed [4, 5, 6].
More recently, Dokmanić et al. developed the concept of acous-
tic rake receiver in more details and proposed several optimal
and intuitive formulations according to the raking principle [7].

A large part of the beamforming literature tends to focus
on dereverberation and room equalization and assume a de-
tailed knowledge of the room impulse response [8, 9, 10]. This
approach has two main drawbacks. First, it considers all re-
verberation as harmful. Second, the room impulse response is
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generally difficult to estimate precisely. Instead we are only in-
terested in exploiting the early echoes to improve the desired
source power versus that of an interferer or ambient noise.

Psychoacousticians demonstrated that the energy of early
echoes (within 30 ms to 90 ms of the direct sound) is perceptu-
ally integrated with the direct sound [11]. Thus fully distortion-
less response seems not completely necessary. In fact, different
works have shown that channel shortening rather than inversion
leads to practical systems and better behaved filters [12, 13].

Moreover, locating just the early reflections is significantly
easier than full estimation of the room impulse response (RIR).
In many situations, the shape of the room can be known in ad-
vance from blueprints or measurements [14]. Then knowing
the location of the real source allows to calculate the positions
of the echoes. Localizing the direct sound is a well understood
problem [15]. In ad-hoc deployment, recent works propose a
calibration step to locate the main reflectors [14, 16, 17, 18].
Note that there is in fact no necessity to know the room ge-
ometry exactly, the positions of the image sources being suf-
ficient. The echo sorting algorithm from [14] allows to locate
the main echoes from measured RIR. Another approach is the
audio camera of [4].

In [7], the beamformers are formulated in the frequency
domain for narrowband sources. To extend the beamformer to
wideband signals, the short time Fourier transform is applied
to the signal and the optimization problem is solved for every
frequency band. While the frequency domain formulation is
simpler, it does not allow precise control over critical parame-
ters of the beamforming filters. In particular, the beamforming
filters might be very long and we would like to approximate
them by short filters.

This paper brings together the raking principle, geometri-
cal acoustics and perceptual criteria to optimize beamformers
directly in the time-domain. We present several optimal for-
mulations for raking beamformers. We demonstrate how the
geometry of early echoes determines the minimum delay nec-
essary for maximal raking. Conversely, we show how the delay
determines the number of echoes that can be raked. Further,
we show how relaxing the distortionless requirement accord-
ing to psychoacoustics allows to obtain better behaved beam-
forming filters and higher signal to interference and noise ra-
tio (SINR), while maintaining tight control over pre-echoes.
Throughout the paper we assume the positions of the principal
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Fig. 1. Illustration of the image source model and the notation
of the paper. First (�) and second (©) order image sources of
s0 are shown.

images sources to be known. In practice they can be estimated
using one of the techniques mentioned earlier.

This paper is organized as follows. Section 2 introduces
the notation, the signal model and basics of beamforming. Sec-
tion 3 presents several time-domain formulations of rake beam-
formers. The beamformers are validated through numerical ex-
periments in Section 4. Conclusions are drawn in Section 5.

2. NOTATION AND SIGNAL MODEL

We denote all matrices by bold uppercase letters, for example
A, and all vectors by bold lowercase letters, for example x.
The Euclidean norm of a vector is denoted by ‖ · ‖, as in ‖x‖ def

=

(xTx)
1
2 . All vectors and matrices are real-valued.

Suppose that in a room, there is a desired source of sound
located at s0. Sound from this source arrives at the micro-
phones located at (rm)Mm=1 via the direct path, but also through
echoes from the walls. We model echoes, or the multipath prop-
agation, by the image source model [19, 20]. Image sources are
simply the mirror images of the real sources across the corre-
sponding walls.

Denote the signal emitted by the source x[n] (e.g. the
speech signal). Then all the image sources emit x[n] as well,
and the signal from the image sources reaches the microphones
with the appropriate delays, that correspond to delays of the
echoes. In our application, the essential fact is that echoes cor-
respond to image sources. We denote the image sources po-
sitions by sk, 1 ≤ k ≤ K, regardless of their generation, or
the sequence of walls that generates them. This is illustrated
in Fig. 1. Let K denote the largest number of image sources
considered.

Suppose that in addition to the desired signal, there is an
interferer at the location q0. For simplicity, we consider only
a single interferer, but in general there could be any number
of them. The interferer emits the signal z[n], and its image
sources emit z[n] as well. Similarly as for the desired source,
qk, 1 ≤ k ≤ K′ denote the positions of interfering image

sources, where K′ is the largest number of interfering image
sources considered.

The signal at each microphone can thus be written

ym(t) =

K∑
k=0

(am(sk, t) ∗ x(t))

+

K′∑
k=0

(am(qk, t) ∗ z(t)) + bm(t) (1)

where am(sk, t) is the channel response between sk and the
rm, and bm(t) is additive white Gaussian noise (AWGN) at
rm. In our simple model, we do not consider frequency selec-
tivity of the walls and assume that

am(sk, t) =
α(sk)

4π‖sk − rm‖
δ

(
t− ‖sk − rm‖

c

)
where rm is the position of the mth microphone and c is the
speed of sound in air, α(sk) is an attenuation factor depending
on the reflection order, and δ(t) is the Dirac delta function. We
discretize the channel response into an FIR filter by convolution
with an ideal low-pass filter,

am(sk, n) =

∫ ∞
−∞

am(sk, u) sinc(n− Fs u) du

=
α(sk)

4π‖sk − rm‖
sinc

(
n− Fs

‖sk − rm‖
c

)
.

We assume in addition that these discrete filters can be limited
to length Lh. We can now rewrite (1) in matrix form

ym =

K∑
k=0

Am(sk)x+

K′∑
k=0

Am(qk)z + bm

where

ym = [ym[n], . . . , ym[n− Lg + 1]]T ,

x = [x[n], x[n− 1], . . . , x[n− L+ 1]]T ,

z = [z[n], z[n− 1], . . . , z[n− L+ 1]]T ,

bm = [bm[n], bm[n− 1], . . . , bm[n− Lg + 1]]T .

and Am(sk) is the Lg × L convolution matrix, with Lg the
size of the beamforming filter, L = Lh + Lg − 1. It is a
Toeplitz matrix whose first row is am(sk, n), n = 0, . . . , Lh−
1, padded with Lg − 1 zeros, and first column is am(sk, 0)
followed by Lg − 1 zeros.

Stacking all the vectors and matrices, indexed by m into a
single vector and matrix, and dropping the index, we obtain the
following compact form

y =Hsx+Hqz + b,

where Hs =
∑K
k=0A(sk) and Hq =

∑K′

k=0A(qk). The
mth beamforming filter is gm = [gm[0], . . . , gm[Lg−1]]T and
its output at time n can be written as the inner product gTmym.
Stacking all M filters in a vector, g = [gT0 · · · gTM−1]

T , the
sum of all filter outputs is conveniently computed as gTy. The
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responses of the beamformer towards the desired source and
interferer are

us =H
T
s g, uq =H

T
q g,

respectively. Finally, the letter τ is used to denote the delay (in
samples) of the beamformer.

3. TIME-DOMAIN RAKE BEAMFORMERS

3.1. Minimum Variance Distortionless Response Rake
Beamformer

A time-domain flavour of the classic Capon minimum variance
distortionless response (MVDR) beamformer [21] is given by1,

minimize
g

E|gTy|2 subject to gThτ = 1,

where hτ is the τ th column of Hs. The constraint forces unit
response towards the desired source. The value of τ determines
the delay of the beamformer and should be larger than the lat-
est arriving echoes that we would like to rake. The objective
can be developed into E|gTy|2 = gTRyyg where Ryy is the
covariance matrix of y,

Ryy =HsRxxH
T
s +HqRzzH

T
q +Rbb,

where in turn Rxx, Rzz , and Rbb are the covariance matrices
of x, z, and the noise. The optimization problem becomes

minimize
g

gTRyyg subject to gThτ = 1 (2)

and is solved for

gR-MVDR = R−1
yy hτ (h

T
τR
−1
yy hτ )

−1.

Assuming samples from both sources are independent and
identically normally distributed, and that the noise is AWGN,
i.e. Rxx = σ2

xI , Rzz = σ2
zI , and Rbb = σ2

nI , (2) can be
rewritten

minimize
g

σ2
x ‖us‖2 + σ2

z ‖uq‖2 + σ2
n ‖g‖2

subject to us[τ ] = 1, us =H
T
s g, uq =H

T
q g,

where us[τ ] is the τ th element of us. From this form, it is
clear that the optimal beamformer will balance distortionless
response towards desired source, interference cancellation, and
noise suppression. For a fixed Lg , adding more image sources
will increase Lh and consequently the number of constraints in
the optimization problem. Reducing so the feasible set might
decrease the noise suppression performance of the beamformer.

Finally, using our geometric interpretation it is possible to
know precisely how many echoes can be exploited. Because the
response is distortionless, the output of the beamformer should
be the desired source with a delay τ (not considering model
inaccuracies). This means that only echoes arriving within the
time τ of the direct sound can be used to improve the source
power. Knowing the propagation speed of sound translates
into a geometrical criterion on which image sources can be in-
cluded. All image sources within distance ‖s0 − rm‖+cτ/Fs
of the microphone array can be used, c being the speed of
sound, and Fs the sampling frequency.

1Although the response is not truly distortionless, we follow the
definition of the time-domain MVDR beamformer of Benesty et al [10].

3.2. Perceptually motivated Rake Beamformer

Psychoacoustics studies show that early echoes contribute to
perceived power, and speech intelligibility. Lochner and Burger
[11] describe precisely how much reverberation is perceptually
beneficial. As determined for speech signals, echoes arriving
within 30 ms of the direct sound are fully integrated, while
those arriving within 95 ms are still partially integrated. Echoes
arriving later than 35 ms are noticeable.

In regard of these results, we can partially relax the dis-
tortionless requirement. We define the perceptually motivated
rake beamformer with the following four criteria.

• Minimize the interference and noise power.

• Zero response before τ (i.e. no pre-echoes).

• Unit response at τ .

• Zero response after τ + κ, where κ ∼ 35 ms.

The optimal such beamformer is found by the quadratic pro-
gram,

minimize
g

gTKnqg subject to gT Ĥs = δ
T
τ ,

where Knq = HqRzzH
T
q + Rbb, the matrix Ĥs contains

the columns 1 to τ and κ+ 1 to L of Hs, and δτ is the vector
with a one at position τ and all other entries zero. Note that
an alternative formulation including all zero forcing constraints
directly in the objective exists. The solution of this program is

gR-P =K−1
nq Ĥs(Ĥ

T

sK
−1
nq Ĥs)

−1δτ .

A similar criterion as for Rake MVDR beamformer applies
as to which image sources can be used constructively. Thanking
to the relaxation, image sources up to distance ‖s0 − rm‖ +
c(τ + κ)/Fs can be included in the optimization.

3.3. Maximum SINR Rake Beamformer

The signal to interference and noise ratio (SINR) is defined as

SINR =
E|gTHsx|2

E|gT (Hqz + b)|2 =
gTKxg

gTKnqg
, (3)

where Kx = HsRxxH
T
s . This quantity can be opti-

mized directly by solving the generalized eigenvalue problem
Kxg = λKnqg, and the maximizer is given by the gen-
eralized eigenvector corresponding to the largest generalized
eigenvalue. This will however not yield a practical beam-
former. Because no constraint is imposed on the response
towards the desired source, its signal can be arbitrarily dis-
torted. Nevertheless, this gives an upper bound on achievable
SINR.

4. NUMERICAL EXPERIMENTS

In this section, we assess the performance of the three rake
beamformers described. First, we inspect the beampatterns ob-
tained. Then, the gain of using additional sources is evaluated
in terms of output SINR. We use the same simulation setup as in
[7]. For sound propagation simulation we use up to 10th order
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Fig. 2. Beampatterns of (A) Rake MVDR, and (B), (C) Rake
Perceptual, in a 4 × 6 m room containing the desired source
( ) and an interferer (�). In (C), the interferer is in the direct
path of the desired source. First order image sources are also
displayed. The darker/red and light/yellow lines are for 800 Hz
and 1600 Hz, respectively.

reflections (220 image sources). The sampling frequency is 8
kHz. Samples from both sources are assumed to be zero-mean
independent and identically distributed and the noise is AWGN
so that

Rxx = σ2
xI, Rzz = σ2

zI, Rbb = σ2
nI,

where I is the identity matrix and σ2
x = σ2

z = 1.

4.1. Beampatterns

We consider a 4 by 6 m room with a source of interest at (1,
4.5) and a linear array of eight microphones equally spaced by
8 cm, parallel to the x-axis and centered at (2,1.5), the origin
being the lower left corner of the room. The beamforming fil-
ters length is 50 ms (Lg = 400 at 8 kHz) with a delay of 20 ms.
The noise variance at the microphones is fixed at σ2

n = 10−7.
Beampatterns for both Rake MVDR and Rake Perceptual with
an interferer placed at (2.8, 4.3) are shown for 800 Hz and
1600 Hz in Fig. 2. The diagram in the figure shows the beam-
patterns for Rake Perceptual when the interferer is placed in the
direct path of the desired source at (1.5,3). We observe that in
that case, the beamformer completely ignores the direct sound
and focuses on the reflections. Such a scenario could not be
handled by a beamformer only considering the direct sound.

4.2. SINR gain from raking

The SINR gain from raking is investigated through Monte-
Carlo simulation. We consider the same room and beamform-
ing filters length as in Section 4.1, but pick source and interferer
positions uniformly at random. At each run, the SINR accord-
ing to (3) is computed for Rake MVDR, Rake Perceptual, and
Rake MaxSINR. Even though Rake MaxSINR is not practical,
it gives an upper bound on the SINR gain that can be expected.
The same number of image sources K = K′ = 0, . . . , 9 is
used for the source and the interferer. The noise variance is
fixed so that the SNR of the direct path of the desired source is
10 dB at the center of the array or σ2

n = 10−1(4π ‖s0 − r̄‖)−2

where r̄ = M−1∑M−1
m=0 rm is the center of the array. The

beamforming filters length is fixed to 30 ms (i.e. Lg = 240)
and the delay is 20 ms.
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Fig. 3. Median output SINR computed according to (3) against
the number of image sources K used in the optimization. The
same number of image sources is used for the desired source
and the interferer. The ambient noise SNR is fixed to 10 dB
with respect to the direct path of the desired source and the
center of the microphone array. The grey area contains 50% of
the Rake MaxSINR outcomes.

The outcome of the simulation is depicted in Fig. 3. Each
point is the result of 10000 outcomes. For every beamformer
considered, adding more sources results in a net increase in
SINR. Adding just the 1st order reflections, or 5 sources, rakes
in 3.5 dB and 5.7 dB improvement in SINR for Rake MVDR
and Rake Perceptual, respectively. Rake MaxSINR shows that
at most 11 dB improvement can be expected. We also observe
that the extra degrees of freedom of Rake Perceptual are very
beneficial as it is consistently 4 to 5 dB above Rake MVDR
when image sources are used.

5. CONCLUSION

Drawing inspiration from the rake receiver we developed time-
domain beamforming designs exploiting temporal and spatial
diversity of an acoustic signal in a reverberant environment. We
proposed two beamformers, one based on the classic MVDR
beamformer and another perceptually motivated with relaxed
constraints on the beamformer response. We show in numer-
ical experiments that even short filters are enough to suppress
an interferer, even when it is in the direct path of the desired
source. Through Monte-Carlo simulation, we show that rak-
ing signal from more sources results in a net increase of the
SINR for all designs proposed, the perceptually motivated de-
sign beating the distortionless design by around 5 decibels.

Although the Rake Perceptual beamformer seems to per-
form well, it only minimizes the power from the interferer. In
further work, we would also like to maximize the desired source
power in a perceptually relevant manner. Another goal is to in-
vestigate in more details the relationship between filter length,
delay, and performance. A crucial step will be to validate the
designs experimentally.
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