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ABSTRACT

The large degrees of freedom of irregular microphone placements 
render them difficult to analyze and optimize. This paper examines 
beamformer  performance  based  on  statistical  descriptions  of 
irregular geometries. Four geometry descriptors are developed to 
capture the properties of microphone distributions showing critical 
impact on array performance. Based on the relations of descriptors 
on performance matrices, a heuristic searching and a direct cluster 
design  method  are  applied  to  obtain  optimal  arrays  for  speech 
applications.  Results  show  significant  SNR  enhancements  for 
optimized  arrays  over  comparable  regular  arrays.  Objective 
functions  of  heuristic  searching  result  in  rapid  convergence  to 
Monte  Carlo  optimizations,  suggesting  a  strong  correlation 
between performance and proposed descriptors. By clustering mics 
in the hyperbola areas to generate rich entropy, arrays with superior 
SNR  performance  are  directly  build  according  to  the  prior 
knowledge of acoustic scene. The feasibility of these optimization 
methods has also been demonstrated in real design cases. 

Index  Terms—Geometry  descriptor,  irregular  array, 
optimization, cluster design

1. INTRODUCTION

Microphone arrays use spatial diversity to capture acoustic signals 
and suppress interference and noise based on source locations. It is 
widely  used  in  applications  such  as  speech  enhancement,  talker 
tracking, and acoustic surveillance system [1][2].  Regular arrays, 
whose elements are uniformly spaced are well studied in previous 
research. Their performance improvements were typically bounded 
by array geometry limitations , such as spatial aliasing, focal area 
resolution,  and  consistent  performance  over  spectral  rage  of 
expected sources [1-5]. 

Irregular  arrays have the the potential to outperform regular 
ones  especially  for  broadband  speech  signals  in  immersive 
environments; however,  the  large  degrees  of  freedom  of 
microphone  placements  render  them  difficult  to  analyze  and 
optimize  [1-5].  It  is  not  clear  which  geometric  properties  are 
critical for performance (such as aperture and element spacing for 
regular geometries). A direct approach to optimize an distribution 
of microphones for a specified acoustic scene involves evaluating 
the performance of randomly generated candidates via Monte Carlo 

simulation [2], where for each run the spatial gains are computed 
over  the  space  containing  the  sources  of  interest.  This  method, 
however, is time-consuming for large spaces and complex acoustic 
scenes. This  limits  their  feasibility  for  applications  where  rapid 
deployment  is required,  such as in the case of mobile  platforms 
with changing acoustic scenes and surveillance applications. 

Therefore,  this  paper  examines  beamformer  performance 
based  on  statistical  characteristics  of  microphone  geometries. 
Effective  geometry  descriptors  are  identified  and  analyzed, 
showing  significant  impacts  on  key  performance  matrices  for 
speech  signal  applications.  Two  optimization  algorithms  for 
irregular arrays are presented, including a Genetic Algorithm (GA) 
and  a  Hyperbola  Cluster  Design  (HC).  Efficient  objective 
functions  based  on  array  geometry  descriptors  and  flexible 
acoustic scene descriptions are applied to circumvent the need to 
compute the spatial gains, and more directly relates geometry to 
performance. In addition, experimental results of optimized arrays 
in terms of SNR are compared to comparable arrays with regular 
spacings,  as  well  as  those  determined  through  Monte  Carlo 
simulations.

2. PROBLEM FORMULATION 

Consider arrays  and sound sources  distributed in  space.  Signals 
received by the pth microphone can be expressed as: 

v p t ;r s , r p =ut ;r s ∗h t ;r s ,r p ,              (1) 
where  *  denotes  the  convolution  operation, u t ; r s is  the 
sound wave from source located at r s , and h(·) is the impulse 
response for the propagation path from r s to r p given by:

h t ; r s ,r p=∑
n=0

∞

a spnt− spn ,                     (2)

where a spn t is the nth path propagation response, and  spn

is the corresponding time delay. 
    To be consistent for  all  microphone distributions,  a flexible 
delay-and-sum  beamformer  with  inverse  distance  weighting  is 
applied for all cases considered in this paper. The resulting power 
leaked  between  the  focal  point  and  other  spatial  regions  (i.e. 
sidelobes) can be expressed in the frequency domain as:

S r i ,r s =∫∑
p=1

P

∑
q=1

P

B ip Biq
V p ; r s , r p V q

*  ;r s ,r q

exp  j ip− iqd 
,   (3)
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where r i is the beamformer focal point, r s is  the location of 
the sound source, V p is the Fourier transform of v p , P
is  the  number  of  microphones,  and  beam  steering  parameters

Bip and ip are  set  according  to  target  position r i and 
microphone  position r p ,  given  by Bip=1/d ip and
ip=d ip / c ,  where d ip denotes  the  distance  from r i to
r p and c is the speed of sound. For scenes containing multiple 

sources, the total output power is computed from the superposition 
of  all  sources.  In  the  following  analysis, Bip and ip are 
treated  as  random  variables,  resulting  directly  from  the  array 
geometry to be optimized, and the distribution of differential path 
lengths  for  all  microphone pairs in the array systems is directly 
related to  the  array's  ability  to  suppress  sources  away from the 
focal point [5-7].
   The relationship between beamformer output power for sources 
at  and  away from the  focal  point  can  be  partially  observed  by 
applying  the  expected  value  operator  to  Eq.  (3)  to  isolate  the 
exponential sum and describe its ability to suppress interferences 
based on the microphone distribution properties. In cases when the 
interfering source is not in the mainlobe, the attenuation factors can 
be  assumed  uncorrelated  with  pairwise  path  differences  for 
microphone  pairs.  With  this  assumption  and  considering  only 
direct  path propagation,  the expected value  over  all  microphone 
pairs, generated by the double summation in Eq. (3), results in:       

E [S r i , r s ]=P2∫ 〈∣ U  ; r s∣
2 〉E [Bip B iq Asp Asq

*]

E [exp j 2 d sq−d sp

 
d ip−d iq

 ]d 
,   (4) 

where the angular brackets denote the average power in the case of 
the  source  [6-8].  When  a  source  is  located  at  the  focal  point,

r s=r i , the complex exponential becomes 1, and the signal at
r s is enhanced by the  coherent addition independent of array 

geometry,  while  interfering  sources  have  weaker  average  power 
due to incoherent phases of exponential terms. The degree to which 
this summation approaches zero depends on the Differential-path 
Distance  (DPD)  distribution  of  all  microphone  pairs  to  the 
interfering  sources  and  focal  point  relative  to  the  signal 
wavelengths. The level of incoherence can be directly related to the 
DPDs  derived  from  microphone  positions  and  expected  source 
distribution in the acoustic scene. A limited range of DPD values, 
relative to the wavelength, results in a strong partial coherence for 
signals  received  from  non-target  positions,  while  a  wide  DPD 
range with a uniform distribution of phase terms from − to
 results in an incoherence with a near zero power gain for 

non-target  source positions [6-8].  Unfortunately,  the  statistics  of 
the  DPDs do not  directly  lead  to  geometries  that  can be easily 
visualized.  However,  they  can  be  easily  computed  from 
microphone  positions  and  used  as  an  efficient  alternative  to 
compute the array gain pattern. Statistics based on these quantities 
will  be  referred  to  geometric  descriptors,  and  used  to  both 
characterize arrays and assess performance for the optimization. 

3.    GEOMETRY DESCRIPTORS

In  order  to  further  characterize  the  relationship  between  array 
geometries  and  beamformer  performance,  four  statistical 
descriptors  of  microphone  distributions  are  proposed  in  this 
section, that have been correlated with key performance matrices.  
Important conditions for array performance  are its distance from 
the focal point and the spread of its distribution. The array centroid 

represents  the  array  position,  and  can  be  use  to  compute  its 
distance to the focal point, and spatial dispersion or spread. It has a 
direct  impact  on  the  main  lobe  resolution  and  shape.  For  a 
distribution of P microphones, the array centroid is given by:

r 0=x0, y0, z0 = 1
P ∑p=1

P

x p , 1
P ∑p=1

P

y p , 1
P∑p=1

P

z p ,        (5)

where r p=[ x p , y p , z p] is the position of the pth microphone. 
The array distance or offset from the focal point is given by: 

L=x0−x i
2 y0−y i

2z 0−z i
2 ,             (6)

where r i=x i , y i , zi denotes  focal  point.  Array  dispersion 
about the centroid is computed by:

a= 1
P ∑p=1

P

x p−x0
2 y p−y0 

2 z p− z0 
2 ,       (7)

which is analogous to the array aperture typically used for analyz­
ing regular geometries.
       When comparing the performance of various arrays, the P, L, 
and a will be kept constant. These parameters are typically given 
as  the  environmental  constraints  (i.e.  allowable  positions  for  a 
fixed number of microphones) and directly impact resolution, the 
type of wavefront that can be exploited (near or far field), and the 
possible  range  of  DPDs.  These  parameters  will  be  used  to 
characterize  both  regular  and  irregular  arrays  and  ensure  that 
similar classes of arrays are compared.  So for classes of arrays 
with  fixed  P,  L and  a,  descriptors  involving  the DPD diversity 
from  interfering  sources  to  the  array  elements  are  applied  as 
descriptors related to performance [6]. Given a microphone pair 
(p, q) and 2 spatial positions, a DPD is explicitly defined as:

 p qr i , r s=d sq−d spd ip−d iq ,              (8)
which  is  taken  from  the  exponent  argument  in  Eq.(4).  This 
definition can be applied in the cases with both overlapping and 
distinct noise and target spaces. Since the DPD distribution spread 
is  important  for  achieving  incoherence  and  suppressing  source 
points  away  from  the  focal  point,  the  standard  deviation  is 
considered as a measure affecting performance, given by:

r i , rs = 1
P2∑

p=1

P

∑
q=1

P

 pqri ,r s 
2 ,                (9)

     From Eq.(9), it can be seen that DPDs will be symmetric about 
zero in the double summation, therefore DPDs will always be zero 
mean.  Because the DPD standard deviation does not necessarily 
indicate  the  level  of  DPD  diversity  over  its  range,  Pielou's 
Evenness  Index,  which  is  a  normalized  Shannon  entropy,  is 
applied to numerically assess the DPD diversity over the range [6]
[11]. It is computed as:

J ri ,r s=
H r i , r s

H maxr i , r s
=

−∑
k=1

K

 p k ln pk

−∑
k=1

K

 1
K

ln  1
K

=
−∑

k=1

K

 pk ln pk 

ln K

,(10) 
where  K is  the  total  number  of  DPD  bins  for  the  histogram 
estimate and pk is the percentage of DPDs within the  kth bin. The 
value of  K can be determined empirically to result in reasonably 
smooth histograms of the DPDs. For the results in this paper 10 to 
20 bins over the dominate signal wavelength were sufficient for 
consistent performance. H ri ,r s  is the Shannon entropy,  and 

H maxr i , r s is  the  maximum possible  entropy  for  the  given 
number of bins. This normalization avoids the variation brought by 
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different  ranges  of  DPD  distributions  and  different  numbers  of 
microphones. 
    Therefore,  four  geometry  descriptors  {L,  a,  ,  J}  are 
proposed  to  characterize  both  regular  and  irregular  microphone 
distributions.  Their  significant  impacts  on  array  beamforming 
performance  in  specified  environments  have  been  demonstrated 
and summarized in paper [5-7]. For example, arrays with high DPD 
entropy  and  wide  DPD spread  correspond  to  arrays  with  better 
noise  suppression  ability  in  near-field  applications,  such  as  in 
immersive  environments.  These  relationships  between  geometry 
descriptors and performance matrices can be applied to predict the 
array  SNR  performance  in  given  acoustic  environments,  and 
further act as the objective functions in the optimization procedure 
to  search  for  the  optimal  microphone  distributions.  In  addition, 
since  the  DPD  statistics  so  far  do  not  have  simple  geometric 
interpretations and must be computed based on all the microphone 
positions  and  desired  focal  points,  a  cluster  design  method  is 
developed  to directly generate optimal arrays with good values of 
proposed  geometry  descriptors  or  guide  adhoc microphone 
placements.                                        

4.     OPTIMATION ALGORITHMS

4.1. Heuristic searching 

In  contrast  to  a  direct  searching  method  via  Monte  Carlo 
simulations  which  randomly  selects  new  distributions  of 
microphones for  each sample run,  the GA approach exploits the 
history of previous fitness values in creating subsequent generation 
of  arrays  with  better  fitness,  along with  perturbations to  include 
diversity  in  each  generation.  Fitness  for  each  microphone 
distribution candidate is assessed by the objective function derived 
from the relationships between proposed geometry descriptors and 
relevant  beamformer  performance.  Then,  the  next  generation  is 
selected based on parent fitness values. Various levels of diversity 
are  achieved  through  crossover  and  mutation  in  the  next 
generation.  The  evolution  procedure  continues  until  reaching 
acceptable fitness or iteration limit. 
    The GA objective function applied to predict the beamformer 
performance via geometry descriptors can be shown as: 

F G = ∫
r i∈ target space { ∫

rs∈noise space
G , r i ,r s  p r s | r i d r s}pr i d r i

                                                                                                  (11)
where  G  represents  a  particular  array  geometry  with  a  set  of 
geometric  descriptors  {L,  a,  ,  J}. G , ri ,r s  is  the 
relationship  functions  between  geometric  descriptors  and 
performance  matrices through nonlinear  regression  analysis  and 
Monte Carlo simulations [14]. For a given focal point ri and noise 
source at rs ,

G , ri ,r s =−  L, a , , J , ri ,r s 
+⋅max [ B3dBL ,a , , J , r i- , 0 ] ,    (12)

where B3dB and  represent  the  interested  performance 
matrices,  Mainlobe  Width  (MLW)  and  the  Mainlobe-to-peak-
sidelobe Ratio (MPSR). Considering the trade-off between MLW 
and  MPSR,  a  penalty  is  enforced  when  the  MLW  exceeds  a 
threshold  while  maximizing  MPSR.  represents  the  limit  on 
the maximum MLW. The maximum operation enforces the penalty 
with weight  , only when MLW exceeds this limit. 

      For a specified acoustic scene, pri and prs | ri are 
the  probability  density  functions  representing  the  likelihood  of 
positions for the desired target and possible noise source locations. 
Normally,  there  are  related  to  the  behavior  patterns  of  sound 
sources,  such  as  usual  moving  tracks  and  possibilities  to  make 
sound. In the case when no prior knowledge is available, these can 
simply be set to uniform distributions. Therefore, the criterion to 
search for optimal array geometry is represented by:  

G opt= argmin
G∈mic space

〈F G  〉  ,                      (13)

   A successful GA has to maintain the balance between inheritance 
and  exploration,  which  means  the  tradeoff  between  searching 
diversity  to  ensure  global  optimum  (related  with  computing 
complexity) and convergence rate. In our experiments, the size of 
initial  population,  ratio of elites selection,  ratio of mutation and 
crossover, and standard deviation of perturbation in mutation are 
the relevant factors which need to be adjusted to maintain robust 
performance  of  optimization  procedure  in  specified  scenes.  The 
details of GA setting and objective functions have been provided 
in paper [5-7,14].    

4.2.  Hyperbola cluster design

It has been demonstrated that  arrays with high DPD entropy and 
wide  DPD  spread  correspond  to  arrays  with  better  noise 
suppression ability [6].  Although the DPD statistics do not have 
simple geometric interpretations and must be computed based on 
all the microphone positions and desired focal points, by defining 
the hyperbola areas, HC can directly design an optimal array with 
good  values  of  proposed  geometry  descriptors  or  guide  ad hoc 
microphone placements.
      As defined in Eq.(8), the DPD is explained as the difference of 
the differential  distances from each mic to two spatial  positions

{r i , r s} in FOV.  It can be rewritten as:
 p qr i , r s=d sq−d iq −d sp−d ip ,                (14)

Since a hyperbola curve can be defined equivalently as the locus of 
points where the absolute value of the difference of the distances to 
the two focuses is a constant (equal to the distance between its two 
vertices), it can be applied in here to distinguish microphones with 
different values of d sq−d iq . As shown in Figure 1, each pair 
of {r i , r s} are considered as the focuses. Microphones located 
on the same hyperbola curve (marked as dashed lines with same 
color) have identical values of d sq−d iq , while microphones 
located inside the hyperbola curve show larger absolute values of 
differential  distance.  Therefore,  with  specified {r i , r s} ,  in 
order to obtain large spread and uniform distribution of DPDs over 
all  microphone  pairs,  microphones  should  be  clustered  in  both 
hyperbola areas (the grey areas in Figure 1) to generate a set of 
DPDs with the possible largest spread. The DPD values between 
the  spread  range  are  obtained  by  the  nearby  microphone  pairs 
located in the same area, providing a smooth entropy.  Note that 
there  is  no  need  to  put  microphones  in  the  middle  area  of

{r i , rs } . 
    Therefore,  it concluded that for one pair of target and noise 
positions,  the  largest  spread  DPDs  will  be  generated  if 
microphones are clustered inside the hyperbola  areas with target 
and noise positions as focuses. For example, Figure 1(a) gives a 
irregular  array  with  top  SNR  performance  resulted  from  GA 
optimization,  where  one  target  and  three  interferences  are 
considered  for  this  scene.  The  hyperbola  areas  for  each  target-
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noise pair are marked in dashed line with different color. It can be 
seen  that  most  of  microphones  in  the  GA-optimized  array  are 
clustered  in  these  hyperbole  areas  (grey  areas).  In  order  to 
demonstrate this conclusion, Figure 1(b) provides a example for the 
irregular array clustered based on the hyperbola theory in the same 
scene.  Microphones  are  divided  into  four  clusters  uniformly 
distributed  in  these  four  hyperbola  areas.  Simulations  are 
performed with  human speech signals  in  corresponding acoustic 
scenes.  The SNR results as in Table 1 demonstrate  that  the HC 
arrays  have  comparable  or  even  better  SNR  results  than  GA 
optimized arrays, while great SNR improvements are observed in 
both  of  these  geometries  compared  with  corresponding  regular 
arrays. 

  
  

          (a)                                               (b)     
Figure 1: Top view of GA-optimized irregular array and hyperbola 
clustered array.  Blue circles  represent  microphones.  Red crosses 
represent the possible noise space. Red triangle is the desired target 
space.  (a) GA-optimized irregular  array.  (b) Hyperbola  clustered 
array.

4.3. Experiments

Numerical  simulations  for  three  different  source  distributions 
(acoustic scenes) are performed. All the experiments are applied in 
a 10×10×2 m audio cage (the field of view) to simulate an typical 
indoor environment for audio surveillance applications. Simulated 
signals consist of colored noise generated by the band importance 
function from the speech intelligibility index (SII)  model,  which 
emphasizes  the  frequency  bands  most  important  to  speech 
intelligibility [12]. As shown in Table 1, the SNR results of optimal 
geometries from GA and HC are compared to randomly generated 
irregular geometries from the first generation of GA (to see impact 
of  applying  objective  functions),  as  well  as  comparable  regular 
arrays  with  the  same  centroid  and  dispersion.  By  comparisons, 
significant  SNR  improvements  are  observed  as  a  result  of  the 
objective  function  rules  in  GA.  Through  GA optimization  with 
proposed geometric criteria as the objective function, the superior 
arrays are sorted out that perform better than the regular arrays in 
all the cases. Moreover, as a direct design method without time-
consuming searching, HC arrays show comparable or even better 
SNR  results  than  GA  optimized  arrays,  while  great  SNR 
improvements  are  also  observed  compared  with  corresponding 
regular arrays. 
     In addition, five separate real recordings with different signal 
power  levels  were  performed  for  the  GA-optimized,  HC  and 
regular planar arrays with 9 microphones over the ceiling of the 
aluminum cage. Colored noise generated by the band importance 
function from the SII model are played through the speakers as the 
sound sources and varied for each recording. In order to simulate 
human speech, the probability for each source to make sound is set 
to 2/3. Figure 2 shows the top-view gain patterns derived from a 

20ms frame of recorded signals, when targeting at the left source. 
The  resulted  average  SNRs overall  time  slots  demonstrated  the 
superior  performance  of  GA-optimized  irregular  array  and  HC 
array, when comparing with the regular one.

Table 1: SNR (dB) comparison of  GA-optimized and HC arrays

Acoustic
Scenes

GA set
(50 arrays )

HC set
(50 arrays )

50  random 
arrays

Reg. 
array

Top  3 
SNR

Avg. 
SNR 

Top 3 
SNR

Avg. 
SNR 

Top 3 
SNR

Avg. 
SNR 

SNR

64 mics with 
continuous 
noise space

9.03
8.99
8.98

8.45 8.92
8.87
8.71

6.81 6.47
5.67
5.49

3.83 3.40

64 mics with 
discrete 
noise 
sources

26.33
25.78
25.63

23.83 28.04
27.38
27.03

24.76 22.61
22.18
22.09

17.96 17.28

9 mics with 
discrete 
noise 
sources

18.24
17.71
17.65

16.56 21.83
21.07
20.69

17.93 17.78
17.62
17.20

9.01 8.89

 

 
 

(a)                           (b)                            (c) 
Figure 2: Top-view gain patterns. The red circles represent source 
positions. (a) Regular planar array. (b) GA-optimized array. (c) HC 
arrays. 

   5.  CONCLUSION

This paper examines the spatial gain patterns of irregular  arrays 
based on statistical descriptions of array geometries. Based on the 
relations  of  identified  geometry  descriptors  on  beamformer 
performance,  a  heuristic  searching  and  a  direct  cluster  design 
method are applied to obtain optimal arrays for speech signals in 
specified immersive environments. It has been demonstrated that 
these methods effectively sorts out these superior arrays showing 
significant  SNR improvements  when  comparing  with  randomly 
generated  arrays  and regular  arrays.  Objective  functions  for  the 
GA  based  on  the  statistical  array  descriptors  result  in  rapid 
convergence relative to Monte Carlo optimizations, which suggests 
a  strong  correlation  between  beamformer  performance  and 
proposed geometry descriptors. In addition, by clustering mics in 
the hyperbola areas to generate rich DPD entropy, HC arrays can 
be  directly  built  according  to  the  prior  knowledge  of  acoustic 
scene,  and provide  comparable  SNR performance with  the GA-
optimized arrays. It is an easy and feasible optimization method for 
the ad hoc (not computer aided) microphone array design.   
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