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ABSTRACT

Microphone array processing utilize spatial separation between the
desired speaker and interference signal for speech enhancement. The
transfer functions (TFs) relating the speaker component at a refer-
ence microphone with all other microphones, denoted as the relative
TFs (RTFs), play an important role in beamforming design crite-
ria such as minimum variance distortionless response (MVDR) and
speech distortion weighted multichannel Wiener filter (SDW-MWF).
Two common methods for estimating the RTF are surveyed here,
namely, the covariance subtraction (CS) and the covariance whiten-
ing (CW) methods. We analyze the performance of the CS method
theoretically and empirically validate the results of the analysis
through extensive simulations. Furthermore, empirically comparing
the methods performances in various scenarios evidently shows thats
the CW method outperforms the CS method.

Index Terms— Relative transfer function, beamforming,
MVDR, speech distortion weighted MWF.

1. INTRODUCTION

Beamforming techniques, which process signals from an array of
sensors (see [1, 2]), hold great potential for improved performance
in speech processing applications (see [3–5]), compared with single
channel processing. Several criteria exist for designing the beam-
former. The minimum variance distortionless response (MVDR) cri-
terion [6, 7] is designed to minimize the interference power while
maintaining the desired speech signal undistorted. Gannot et al. [8]
proposed to apply the MVDR-beamformer (BF) in the short-time
Fourier transform (STFT) domain and to optimize the MVDR cri-
terion at each frequency bin independently. Doclo et al. [3] pro-
posed the speech distortion weighted multichannel Wiener filter
(SDW-MWF) criterion which enables to control the tradeoff between
interference reduction and speech distortion. In the limit case of
zero-distortion the SDW-MWF and MVDR coincide.

By using acoustic transfer functions (ATFs) in designing the
MVDR-BF or SDW-MWF we not only reduce the interference but
also cancel or reduce the reverberation effect caused by the room
impulse responses (RIRs) (also known as dereverberation). Unfor-
tunately, the ATFs are usually unknown and estimating them is a
cumbersome task. Instead of using the ATFs, Gannot et al. proposed
to use the transfer functions relating the speech component at a ref-
erence microphone (one of the microphone signals) with the rest of

the microphones, denoted relative transfer functions (RTFs). Cor-
respondingly, the resulting component of the speech obtained at the
output of the BF equals the speech component at the reference mi-
crophone, with no dereverberation applied, in the MVDR case and
with some controlled distortion in the SDW-MWF case. The RTF
can also be used for localization [9] and for spatial cue preservation,
e.g., binaural cues in hearing aids [10, 11].

Practically, in many scenarios the reverberation level of the en-
closure is moderate, and dereverberation is not necessary for speech
intelligibility. The existence of a plethora of RTF estimation meth-
ods (see [3, 8, 9, 12–15]), makes it a very attractive candidate for
BF design. Two of the most common methods for estimating the
RTFs, namely the covariance subtraction (CS) [3, 12, 16, 17] and
the covariance whitening (CW) [13, 17, 18] methods, utilize esti-
mates of the microphones spatial covariance matrices, obtained dur-
ing interference-only time-segments and during speech plus interfer-
ence time-segments. Implementing the CS method is more appeal-
ing than the CW method, since it involves simple operations and,
opposed to the CW method, does not require any matrix inversion.
Unavoidable estimation errors of the RTF are manifested in some
excess distortion incurred on the speech component at the output.

In this contribution we analyze the accuracy of the RTF esti-
mate obtained using the CS method. The analysis is verified through
extensive simulations. Moreover, we experimentally compare the
accuracies of the CS and the CW methods in various scenarios, and
empirically show that the CW method outperforms the CS method.

The paper is structured as follows. We formulate the problem
in Sec. 2. In Sec. 3 we present and analyze the CS method, and in
Sec. 4 we present the CW method. Results of an extensive simulation
study that verifies the validity of the analysis as well as a comparative
performance study of the two methods are given in Sec. 5.

2. PROBLEM FORMULATION

In this section we define the considered scenario, i.e. the environ-
ment and signals, in Sec. 2.1, and present the estimated second-order
statistics (SOS) that will be used in the following sections in Sec. 2.2.

2.1. Environment and signals scenario

A desired speaker and interference signals propagate in a reverberant
enclosure and are picked up by an array of M microphones. The
received microphone signal at the m-th microphone, denoted xm
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can be formulated in the STFT as:

xm(`, k) , hm(k)s(`, k) + vm(`, k) (1)

where ` and k are the time-frame and frequency indices, s(`, k) de-
notes the speech source (also known as the dry signal), hm(k) de-
notes the ATF relating the speaker and the m-th microphone signal
and vm(`, k) denotes the interference signal component at the m-th
microphone. The ATF is assumed time-invariant, i.e., the speaker
is assumed static, hence hm is not a function of `. Eq. (1) can be
extended by using vector notation to formulate the M × 1 vector of
microphone signals:

x(`, k) , h(k)s(`, k) + v(`, k) (2)

where h(k) denotes the vector of ATFs and v(`, k) denotes the vec-
tor of interference components. Henceforth, all derivations are con-
sidered at a single frequency and therefore k, the frequency index, is
omitted for brevity.

Speech signals are highly non-stationary, and amongst the com-
mon distributions used to model them in the STFT domain are Gaus-
sian or heavy tailed distributions, such as Laplacian. Here, we adopt
the non-stationary Gaussian model, i.e. s(`) ∼ CN (0, βs (`))
where βs (`) ∼ αs

2
· Exp( 1

2
) is a scaled exponential random vari-

able (RV) with an average of αs. Note that the resulting speech
variance is αs.

The covariance matrix of the received microphones signals is
given by:

Rx , E
[
x(`)xH(`)

]
= hhHαs +Rv (3)

where E [•] denotes the expectation operator, Rv denotes the co-
variance matrix of the interference signal components, i.e., Rv =
E
[
v(`)vH(`)

]
and (•)H denotes the Hermitian operator. Note that

the interference signals are assumed stationary.
Assuming that the first microphone is the reference microphone,

the vector of RTFs is defined by:

g ,
1

h1
h. (4)

2.2. SOS estimation

Given Lv frames of microphones measurements of an interference-
only time-segment, the covariance matrix of the interference signals
can be estimated by:

R̂v ,
1

Lv

Lv∑
`=1

v(`)vH(`). (5)

Similarly to (5), given Lx frames of microphones measurements
during a speech and interference time-segment (a different time-
segment than the one used for estimating R̂v), the covariance matrix
of the microphones signals is estimated by:

R̂x ,
1

Lx

Lx∑
`=1

x(`)xH(`). (6)

The latter estimation method is unbiased and its error terms are
denoted by:

R̃v =R̂v −Rv (7a)

R̃x =R̂x −Rx. (7b)

For brevity we assume that Lv = Lx and denote the number of
frames per segment by L.

3. COVARIANCE SUBTRACTION METHOD

In this section we formulate the CS method (see [3, 12, 16]), and
analyze its performance.

3.1. Estimation method

Define the spatial covariance matrix of the speech components:

R∆ , hhHαs = Rx −Rv. (8)

Given the estimated interference covariance matrix R̂v and speech
plus interference covariance matrix R̂x, (8) can be estimated by:

R̂∆ , R̂x − R̂v. (9)

By substituting (7a) and (7b), Eq. (9) can be reformulated as:

R̂∆ = R∆ + R̃∆. (10)

where

R̃∆ , R̃x − R̃v. (11)

Finally, the estimated RTF using the CS method is given by nor-
malizing the first column of R̂∆ by its first entry (assuming that the
first microphone is the reference microphone):

ĝ∆ ,
R̂∆e1

eH1 R̂∆e1

(12)

where e1 ,
[
1 01×(M−1)

]T is an M × 1 selection vector and
(•)T denotes the transpose operator. Note, that the CS method as-
sumes: 1) a rank-1 structure for the covariance of speech compo-
nents; 2) low estimation errors, i.e., R̃∆ ≈ 0. In practice, the rank-1
approximation of the covariance of the speech components depends
on the finite STFT window length and the reverberation time of the
enclosure. Cases where the rank-1 approximation does not hold are
out of the scope of the current contribution (see Serizel et. al. [17]).

3.2. Performance analysis

Substituting (3), (8), (10) into (12) yields:

ĝ∆ ,
h∗1αsh+ R̃∆e1

|h1|2αs + eH1 R̃∆e1

. (13)

When the number of available time-frames is large (L� 1), we can
assume small estimation errors (although non-zero) of the interfer-
ence covariance and speech plus interference covariance matrices.
Specifically, the estimation errors of eH1 R̂ve1, eH1 R̂xe1 and corre-
spondingly eH1 R̂∆e1 are assumed low, i.e. eH1 R̂∆e1 ≈ eH1 R∆e1:

Assumption 1 eH1 R∆e1 = |h1|2αs � eH1 R̃∆e1.

Therefore, (13) can be reformulated as:

ĝ∆ =

(
g +

R̃∆e1

|h1|2αs

)(
1− eH1 R̃∆e1

|h1|2αs

)
(14)

where in the last step we used the first-order Taylor series approx-
imation of 1

1+δ
≈ 1 − δ for |δ| � 1. Further assuming that the

second-order error terms of R̃∆ are negligible, i.e.:
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Assumption 2 R̃∆e1

|h1|2αs
· e

H
1 R̃∆e1

|h1|2αs
≈ 0M×1

the estimated RTF (14) can be approximated as:

ĝ∆ = g + g̃∆ (15)

with the estimation error given by:

g̃∆ ,
1

|h1|2αs

(
I − geH1

)
R̃∆e1 (16)

and I denotes the identity matrix of proper dimensions.
It is well-known that the estimation error, denoted R̃, of the

covariance matrix of a Gaussian RV, denoted R, obeys a complex
Wishart distribution [19], and that the covariance of the errors of the
(i1, j1) and (i2, j2) covariance matrix elements is:

E
[
R̃i1,j1R̃

∗
i2,j2

]
=
Ri1,i2R

∗
j1,j2

L
. (17)

Correspondingly, the covariance matrices of the estimation errors
R̃ve1 and R̃xe1 equal:

Cv ,E
[
R̃ve1

(
R̃ve1

)H]
=

eH1 Rve1

L
Rv (18a)

Cx ,E
[
R̃xe1

(
R̃xe1

)H]
=

eH1 Rxe1

L
Rx. (18b)

Now, since different time-segments are used for estimating R̂v and
R̂x, their corresponding estimation errors can be assumed statisti-
cally independent, and hence:

C∆ ,E
[
R̃∆e1

(
R̃∆e1

)H]
= Cv +Cx. (19)

The ratio of the squared norm of the RTF estimation error and
the squared norm of the RTF, is denoted RTF accuracy and is defined
as:

ε∆ ,
E
[
‖g̃∆‖2

]
‖g‖2 . (20)

By substitution of (16) and (19) into (20) we have:

ε∆ =
1

‖g‖2 (|h1|2αs)2
tr

{(
I − geH1

)
C∆

(
I − geH1

)H}
(21)

where tr {•} denotes the trace operator.
Noting that

(
I − geH1

)
h = 0 and substituting (4), (18a), (18b)

and (19) into (21) yields:

ε∆ =
1

L
· 1

‖h‖2αs
·
(
1 +

2

η

)
·

· tr
{(

I − geH1

)
Rv

(
I − geH1

)H}
(22)

where η is defined as the signal to interference ratio (SIR) at the
reference microphone:

η ,
|h1|2αs
eH1 Rve1

. (23)

Further simplification of (22) yields the final expression for the RTF
accuracy using the CS method:

ε∆ =
1

L
· 1

‖h‖2 ·
(
1 +

2

η

)
·

·

(
tr {Rv}
αs

−
2 re

{
eH1 Rvg

}
αs

+
‖h‖2

η

)
(24)

where re {•} denotes the real operator.

4. COVARIANCE WHITENING METHOD

In this section we formulate the CW method (see [13,18]). Using the
Cholesky decomposition (or any other matrix square-root operator),
define the square-root of R̂v and of its inverse:

R̂v =
(
R̂

1/2

v

)H
R̂

1/2

v (25a)

R̂
−1

v =
(
R̂
−1/2

v

)H
R̂
−1/2

v . (25b)

After obtaining R̂
−1/2

v from an interference-only time-segment, we
use it to generate the whitened signal, defined as:

y(`) , R̂
−1/2

v x(`). (26)

Substituting the definition of (2) in the latter equation yields:

y(`) = qd(`) + u(`) (27)

where

d(`) ,
√
γ̂ exp(jφ)s(`) (28a)

u(`) ,R̂
−1/2

v v(`) (28b)

denote the scaled source signal (with an ambiguity phase shift φ and
gain

√
γ̂) and the whitened interference signals, respectively, and

q ,
R̂
−1/2

v h√
γ̂

exp(−jφ) (29)

denotes the normalized ATF in the whitened domain. The nominal
power normalization factor and its estimate are given by:

γ ,hHR−1
v h (30a)

γ̂ ,hHR̂
−1

v h. (30b)

Note that it follows from (7a), (25b), (28b) that E
[
u(`)uH(`)

]
≈ I .

The covariance matrix of y(`) is constructed similarly to (5), (6):

R̂y ,
1

L

L∑
`=1

y(`)yH(`). (31)

Define the eigenvalue decomposition of R̂y as R̂y , Q̂Λ̂Q̂
H

where Q̂ is an orthogonal matrix comprising of the eigenvectors,
and Λ̂ is a diagonal matrix with the eigenvalues on its diagonal.

Define the major eigenvector q̂ as the eigenvector in Q̂ which
corresponds to the maximal eigenvalue in Λ̂ (associated with the
speech component). Finally, the estimated RTF using the CW
method is obtained by transforming q̂ back from the whitened do-
main and scaling:

ĝΘ ,
R̂

1/2

v q̂

eH1 R̂
1/2

v q̂
. (32)
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5. MODEL VERIFICATION AND EXPERIMENTAL STUDY

The theoretical analysis of the accuracy of the CS method is verified
by comparing it to the empirical accuracy in various scenarios, av-
eraged over multiple Monte-Carlo experiments. The accuracy of the
CS method is also empirically compared to the accuracy of the CW
method in all scenarios. Note that simulations were performed di-
rectly in the STFT domain at a single frequency bin using synthetic
non-stationary Gaussian signals and synthetic ATFs (without speech
signals or RIRs simulation). In future work, we plan to examine
the theoretical performance of RTF estimators with speech signals
recorded in real environments.

A circular array comprising M microphones with spacing of
half a wavelength is used. The direction of arrival (DOA) of the
desired source is denoted θd. The interference is comprised ofQ sta-
tionary coherent sources, arriving from equally spaced DOAs in the
range [0o, 360o), and of spatially-white sensors noise. The ratios be-
tween the variances of the desired speaker and the sensors noise, and
between the variances of the desired speaker and the sum of all in-
terferences are denoted signal to noise ratio (SNR) and SIR, respec-
tively. The ATFs of the various sources are modeled as a summation
of two components [20]: 1) a direct arrival component, modeling
the different distances between the microphones and the speaker; 2)
reflection components modeled as a complex normal RV. The ratio
between the power of the direct arrival component and the average
reflections power is denoted direct to reverberant ratio (DRR). The
true RTF is defined as in Eq. (4).

Various scenarios are simulated in order to verify the theoretical
formula of the accuracy of the CS based RTF method, given in (24).
The DOA of the desired source is selected from the set of directions
{0o, 10o, . . . , 350o}. In each scenario the reverberant component
of the ATFs is randomly selected 10 times. For each instance of
the ATFs, the sources are randomly generated in 100 Monte-Carlo
experiments. We obtain estimates of the RTFs based on the CS and
the CW methods, and average their accuracy measures.

We verify the influence of the number of frames L, SIR and
the number of microphones M on the accuracy of the CS estimate.
Unless stated otherwise the simulation parameters are set to: Q = 1,
M = 6, SIR = 0dB, SNR = 20dB, DRR = 30dB and L = 2000.
First, the performance is examined for different values of L, selected
from {1000, 2000, 4000, 8000}. The results are depicted in Fig. 1.
Second, the performance is examined for different values of SIR,
selected from {0dB, 3dB, 6dB, 9dB}, while the number of coherent
interfering sources is set to Q = 3. The results are depicted in
Fig. 2. Finally, the performance is examined for different numbers
of microphones M , selected from {4, 6, 8}, while the number of
coherent interfering sources is set toQ = 6. The results are depicted
in Fig. 3. In all figures, the accuracies are depicted versus the DOA
of the speaker. For each scenario, denoted by a different marker
(circle, square, diamond and star), we plot the empirical accuracies
of the CS and CW methods (denoted in short by emp.), denoted by
dashed-blue and dotted-red curves respectively, and the theoretical
accuracy of CS method (denoted in short by th.), denoted by a solid-
green curve.

Considering the results, the accuracies of both CS and CW meth-
ods improve as the number of frames L and the SIR increases. Also,
it seems that the accuracies are not sensitive to the number of micro-
phones M in both methods.

The validity of the theoretical analysis of the accuracy of the CS

method is verified from these figures. Moreover, it is also evident
that the CW method outperforms the CS method in all tested scenar-
ios.
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Fig. 1: RTF accuracies for various values of L.
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Fig. 2: RTF accuracies for various SIR levels.
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Fig. 3: RTF accuracies for various numbers of microphones,
M .

6. CONCLUSIONS

Two common methods for estimating the RTF were surveyed,
namely, the CS and the CW methods. A theoretical analysis of the
CS was derived. The derivation is based on the complex Wishart
distribution of the estimated covariance matrices, assuming that the
number of frames used for the estimation is large enough. The de-
rived theoretical model was verified through extensive simulations
study. Moreover, from these simulations, it is evident that the CW
method outperforms the CS method.
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