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ABSTRACT

In this paper, a method of adaptive noise suppression combining spa-
tially robust fixed beamforming and the TRINICON blind source
separation algorithm is presented. A multichannel sensor array is
first processed using complementary fixed beamformers into maxi-
mum and minimum SINR channels. The channels form the inputs to
a single 2x2 second-order statistics TRINICON-BSS system which
adaptively compensates for imperfections of the fixed beamformer
design relative to the acoustic scenario. It is demonstrated that inte-
grating the TRINICON-BSS algorithm leads to improved SINR per-
formance over the initial imperfect beamformer design, and achieves
a performance comparable to a perfect MVDR beamformer.

Index Terms— Robust beamforming, Adaptive filtering, Blind
source separation

1. INTRODUCTION

When applying beamforming for signal extraction, a common ob-
jective is to minimise interference while maintaining (ideally) a dis-
tortionless response to some desired source. The narrowband signal
received at an array of M microphones can be expressed in vector
notation as

x(ω) = s(ω)hs(ω) +

I∑
i=1

vi(ω)hv,i(ω) + n(ω), (1)

where ω is the frequency, s and v the desired and interfering signals,
hs and hv the M × 1 acoustic transfer function vectors describing
the wave propagation from the desired and interfering positions to
the microphone locations, and n the sensor noise for each micro-
phone. Ideally, the beamformed output of the system is the undis-
torted desired signal plus suppressed interference plus noise (2).

y(ω) = s(ω) +wH(ω)

[
I∑

i=1

vi(ω)hv,i(ω) + n(ω)

]
, (2)

where w is an M × 1 vector containing the beamforming weights.
Assuming the desired signal, interferers and noise are uncorrelated,
and of zero mean, the MVDR (Capon) beamformer [1] can be used
to generate a beamformer which optimally minimises interference
plus noise while maintaining an undistorted response to the desired
source location. Dropping the frequency indexing for clarity, the
MVDR solution is given as

wMVDR =
R−1

n hs

hH
s R−1

n hs

, (3)

where Rn denotes the interference-plus-noise (referred to as just
noise for simplicity) spatial correlation matrix.

In most practical scenarios, hs and particularly Rn are not
known precisely and must be estimated to compute the beamformer
weights. To handle uncertainty in the desired source position, an
alternative beamforming solution based on a statistical model of
possible desired source locations can be used. The noise spatial
correlation matrix is usually estimated by collecting statistics when
the desired signal is inactive, which typically involves the use of a
voice activity detector for speech applications [2]. Noise estimation
is usually difficult in low SINR environments, and with multiple
non-stationary interferers, so it is sometimes more suitable to use
a simpler model of noise spatial correlation to generate the beam-
former. In reverberant environments with multiple interferers, an
isotropic noise assumption is often appropriate.

More advanced beamforming algorithms attempt to remove
residual noise remaining in the output. In Generalised Sidelobe
Cancelling (GSC) [3], a practical implementation of the MVDR
beamformer, a blocking matrix is used to identify an adaptive filter
designed to remove the residual noise. The multichannel Wiener
filter, which is equivalent to an MVDR beamformer plus a single-
channel Wiener filter post-processor [3], is also frequently presented
as an optimal method in terms of minimum mean squared error
method for noise reduction. Both of these techniques rely, for op-
timal performance, on precise knowledge of desired signal and/or
noise statistics, including the precise location of the desired source.
Implementations of these types of algorithms typically rely on train-
ing procedures [4, 5] to collect the noise correlation statistics. This
can be problematic, especially in non-stationary high noise environ-
ments [2].

In this paper, an alternative method of noise reduction is pre-
sented in which a multiple sensor array is processed via two fixed
spatially robust beamformers, a primary beamformer designed to
maximise SINR, and a second blocking beamformer designed to
minimise SINR, which are further processed using the TRINICON
(Triple-N Independent Component Analysis for Convolutive Mix-
tures) [6] blind source separation algorithm as an adaptive processor
to correct for inaccurate steering vector and noise statistics assump-
tions made in the initial design. Previous similar approaches include
[7], where the authors design a geometrically constrained source
separation algorithm, with assumed known precise signal locations.
Kumatani et al. [8] proposed a minimum mutual information-based
GSC system for speech separation which avoids the typical signal
leakage issues in least squares GSC designs, however their technique
also relies on precise target tracking to generate the primary beam-
formers in their algorithm. This paper focuses on a spatially fixed
simple robust beamforming approach designed to enhance a single
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Fig. 1. System design. The two imperfect beamformer outputs are
fed into the TRINICON-BSS system to exploit the minimum mutual
information property of BSS algorithms to compensate for imper-
fections inherent in realistic scenarios.

desired signal with an uncertain location with uncertain noise corre-
lation statistics. The second-order-statistics version of TRINICON-
BSS removes cross-correlations in the output channels, avoiding the
target signal cancelling issues inherent in GSC algorithms.

2. DUAL BEAMFORMER DESIGN

The inputs to the TRINICON-BSS system are produced by utilising
two beamformers — a primary beamformer which maximises the
expected SINR, and a secondary blocking beamformer which min-
imises the SINR,

λ =
wHRsw

wHRnw
, (4)

where Rs is the target source spatial correlation matrix, Rn is the
noise spatial correlation matrix, and w is the beamforming weight
vector to be derived.

The optimal beamformer can be designed with the desired
source correlation matrix constructed (at each frequency) as

Rs,opt = σ2
shs,directh

H
s,direct (5)

where hs,direct is the direct component (i.e, no reverberant reflec-
tions) of the acoustic transfer function vector. For the far-field beam-
former design, these can be represented using the array steering vec-
tors.

The noise correlation matrix constructed using the expected cor-
relation of the inputs minus the direct desired signal component

Rn,opt = E
{
xxH

}
−Rs,opt, (6)

which incorporates all interferers, reverberant paths and sensor
noise.

Robust beamformers can be generated by utilising probability
distribution-based spatial correlation matrices [9, 10]. This formula-
tion assumes that the desired source can be located at any position,
with an associated probability weighting. For an arbitrary distribu-
tion in spherical coordinates, the spatial correlation matrix entries
can be computed using a volume integral

Rs[i, j] =

∫
V

p(r, θ, φ)hi(r, θ, φ)h
∗
j (r, θ, φ) dV, (7)

where p(r, θ, φ) denotes the source location probability distribution
function, and the hi functions denote the wave propagation function

from the source to the ith microphone. In this paper, the source loca-
tion distribution is assumed to be at some fixed distance from the mi-
crophone array, sufficient for the far-field source assumption to hold,
using a Gaussian angular distribution to generate the correlation ma-
trix, and assuming free-field anechoic plane wave propagation.

The noise spatial correlation matrix was based on the assump-
tion of isotropically distributed noise sources, including reverbera-
tion. Unless specific knowledge of noise distributions in the environ-
ment is available, this is a reasonable assumption. For a 3D far-field
isotropic case this is given by [11] as

Rn[i, j] = j0(kdij) =
sin(kdij)

kdij
, (8)

where j0 denotes the zeroth order spherical Bessel function.
A further assumption is that in the robust formulation, the de-

sired and interferer signal variances (σ2
s and σ2

v,i) are equal to 1.
The beamformer weights wmax and wmin can be obtained by

solving the generalised eigenvalue equation [12]

Rsw = λRnw, (9)

where the eigenvector associated with the largest eigenvalue (λmax)
gives the maximum SINR beamformer wmax, and the eigenvector
associated with the smallest eigenvalue (λmin) gives the minimum
SINR beamformer (nullformer) wmin.

Typically a Tikhonov regularisation term is included in the noise
spatial correlation matrix to improve numerical robustness (corre-
sponding to white noise gain robustness [13]), particularly at low
frequencies. In this paper, a regularisation parameter of 10−6 was
used for the Rn (for the robust beamformers) and Rn,opt (for the
optimal MVDR beamformer as a comparison) matrices.

The primary beamformer (wmax) does not benefit significantly
from the robust formulation if the number of microphones and/or
array aperture is small. There is no significant difference between
the two methods in terms of SINR gain for this particular layout (4-
element, 2 cm circular in-plane array). However, the robust formu-
lation would become more useful for applications with a large array
with a larger number of microphones, where the typical MVDR re-
sponse produces a narrow main lobe.

On the other hand, the use of a distribution of locations is par-
ticularly beneficial in designing the blocking beamformer. In Fig-
ure 2, the expected SINR gain is demonstrated for a perfect null
beamformer and a robust nullformer designed using (9). It is ap-
parent that sufficient attenuation is only obtained for very small an-
gular regions, whereas the robust method is capable of tolerating
a significant uncertainty in the desired source direction. Blocking
beamformers used in methods such as the conventional generalised
sidelobe canceller (GSC) [3] rely on precise nulls, which are not ro-
bust to movement. To tolerate perturbations in the desired source
direction, GSC implementations require various methods to adapt
and track the desired source direction [4, 5] which may be unsuit-
able for high noise environments and/or be computationally expen-
sive. Alternatively, robust GSC implementations such as those pre-
sented in [14, 15] can be used to track the desired source, provided
the SINR can be estimated efficiently. The robust nullformer used
in this paper does introduce some desired signal leakage into the
blocking channel, which could lead to filtering issues if they were to
be used in GSC-type implementations, which operate by removing
correlated components in the blocking path from the primary beam-
former channel. In this paper, an alternative approach to minimum
mean squared error reduction is used to remove residual noise from
the primary beamformer path.
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Fig. 2. Example of the expected SINR gain for the robust and (typi-
cal) perfect blocking beamformers. Plots are shown for a 4-element
2 cm radius circular array at 550Hz.

3. TRINICON-BSS INTEGRATION

In the previous section, a pair of beamformers were derived using
models of signal location and noise correlation. The beamform-
ers were derived using assumptions on the desired signal and noise
statistics based on a best guess of the unknown acoustic scenario.
As these assumptions may not accurately represent the scenario, the
beamformer performance should be expected to be suboptimal. In-
tegrating a blind source separation algorithm into the system should
provide a method for compensating for the errors in the assumptions
made in the initial beamformer design by exploiting the statistical
properties of the beamformer output signals.

In this paper, the second-order statistics (SOS) version of the
TRINICON-BSS algorithm [16] is used to process the beamformer
outputs. This BSS algorithm presents many advantages over other
frequency-domain BSS algorithms [17], including the lack of the in-
ternal permutation problem — in which the output channel ordering
for different frequency bins may not be consistent. The SOS version
of TRINICON-BSS also features low computational complexity and
can be implemented easily as a real-time algorithm on low-cost, low-
power hardware [16, 18].

The cost function for a given block index n in SOS TRINICON-
BSS is given in [16] as

J(n) =

∞∑
i=0

β(i, n) [log det bdiag(Ryy(i))− log detRyy(i)] ,

(10)
where β denotes the block weighting function to incorporate non-
stationarity into the algorithm design by including information
from the previous blocks (i), Ryy denotes the block-wise output
auto/cross-correlation matrix computed from the BSS output chan-
nels, and the bdiag operator selects the block diagonal matrices of
Ryy . This cost function is designed to specify the cross-correlations
between the output channels. The gradient-type adaptation algo-
rithm which minimises this cost function, corresponding to min-
imising the cross-correlation between the two output channels over
all time lags in each block, is specified in [16] as

W+
BSS(n) = WBSS − µ

∞∑
i=0

β(i, n)

WBSS [Ryy(i)− bdiag(Ryy(i))] bdiag
−1Ryy(i),

(11)

where WBSS denotes a Sylvester matrix of filter coefficients, and
µ denotes the gradient descent step-size parameter. The Sylvester
structure of the filter update and Toeplitz structure of the correlation
matrices leads to an efficient frequency-domain vector implemen-
tation of the algorithm [16, 18]. The implementation used in this
paper uses the block-online design presented in [16], where the β
function is approximated by a recursive online function dependent
on the parameter λBSS , set to 0.25, and a block-offline component
which iterates the filter update equations five times using the step-
size parameter µ set to 0.005. 50% block overlap is used for the
BSS algorithm, with the total number of samples per block (N ) set
to 3072. The BSS filter length (L) was set to 1024 taps. The reg-
ularisation parameters (δ) used in the Ryy block diagonal inverse
estimates in (11) were set to 10−10.

While TRINICON-BSS does not exhibit the frequency bin
ambiguity problem common in other frequency-domain BSS algo-
rithms, it does suffer from an overall channel ordering ambiguity.
The ordering of the separated mixtures does not necessarily match
the expected order, i.e., it may not be possible to determine which
of the separated channels contains the desired signal. An existing
method to solve this issue is to impose a directional constraint to the
BSS filter updates [19]. This method relies on coarse knowledge of
the expected direction of arrival for the desired signal to attempt to
create a null directed towards the expected desired source location.

In the beamformer design, a trade-off was made between de-
sired signal leakage and the angular width for the target suppressing
beamformer, introducing desired signal correlation between the two
beamformer output channels. The filter updates in the SOS version
of TRINICON-BSS (11) are designed to remove cross-correlations
between the output channels of the overall system, therefore the de-
sired signal leakage should be minimised as part of the separation
process.

4. SIMULATION SETUP

For our experiments, the image source method [20] was used to sim-
ulate a 6m×5m×4m lightly reverberant room with surface reflec-
tion coefficients of 0.7, and up to third-order reflections used, corre-
sponding to a T60 time of 150 ms. Four mechanical noise interferers
(pump and engine noise) were placed in a circle of radius 3m cen-
tred on the microphone array to simulate isotropic interference. The
microphone array was a four-element circular array with 2 cm radius
placed in the centre of the room. The desired source, a 30 second
sample of speech sampled at 8 kHz, was located 1 m from the micro-
phone array. The beamformers were designed for 8 kHz wideband
signals, with 64 taps for both the robust and optimal beamformers.
The implementation of the SOS TRINICON-BSS used in this paper
is identical to that in [18] using the parameters specified in the pre-
vious section. 50 trials were conducted in which the desired source
direction φs = 180◦ was perturbed by a normally-distributed ran-
dom angle with a standard deviation of σ = 0.25 radians (Figure 3).
A further simulation to test channel ordering robustness was con-
ducted in which the desired source position was located at a known
fixed location, and the four noise sources allowed to vary position
randomly within the room. As in the first case, 50 trials were con-
ducted using the same TRINICON-BSS algorithm parameters as in
the previous section.

5. RESULTS

The robust beamformer typically results in an improvement of at
least 13dB in terms of SINR for the simulated examples of a peak
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Fig. 3. Monte Carlo simulation of source positions (in metres), in-
terferer locations, and microphone layout.

Table 1. Mean SINR (dB) results during speech utterances
Input SINR −16.94 −13.93 −10.92 −7.91 −4.90

Beamformer −3.24 −0.24 2.77 5.78 8.79
BF + BSS −2.07 0.89 3.85 6.81 9.76

Perfect Info. −2.49 0.48 3.44 6.39 9.34

input SINR of between -6 to 6dB speech in diffuse noise, as seen
in Table 1. The inclusion of the blind source separation step im-
proves the mean SINR by up to an additional 3-5 dB during certain
speech utterances in the simulations, and on average by 1-1.5 dB
over all speech utterances, indicating that this method is able to im-
prove the performance of the array by compensating for some of the
assumptions made in the initial beamformer design. Compared with
the perfectly designed (perfect interferer and desired source knowl-
edge) MVDR beamformer, the pre-processed TRINICON system is
able to match and sometimes exceed the performance in terms of the
SINR gain. The slight performance disadvantage the perfect beam-
former exhibits can be attributed to the regularisation introduced into
the noise spatial correlation matrix, required for numerical stability,
which degrades performance.

The mean squared coherence (MSC) measures in Table 3 show-
ing the coherence between the robust beamformer outputs, and the
BSS outputs, show that there is a reduction in coherence after pro-
cessing the beamformer outputs through the BSS algorithm. This
is an indicator that the BSS algorithm is separating the mixtures.
Combined with the SINR results, this suggests that the algorithm is
reducing noise in the output channel containing the target signal.

The SINR figures in Table 1 show only a small improvement
over the robust beamformer when adding the BSS-system, which
can be attributed to the negligible improvement in the middle to high
frequency bins. The robust beamformer is effective at improving
the SINR for high frequencies, but performs poorly at low frequen-
cies due to the limited aperture and number of microphones. BSS is
able to identify filters which produce a super-directive beamforming
effect at low frequencies, which can significantly improve perfor-
mance in situations where low frequency noise is present.

The BSS process introduces signal distortion, from the undis-

Table 2. Mean signal distortion ratio (dB) measures during speech
Input SINR −16.94 −13.93 −10.92 −7.91 −4.90

BF+BSS −25.00 −25.22 −25.49 −25.79 −26.11

Table 3. Integrated MSC measures between the beamformer out-
puts, and BSS outputs

Input SINR −16.94 −13.93 −10.92 −7.91 −4.90
BF 0.438 0.414 0.390 0.373 0.365

BF+BSS 0.312 0.281 0.253 0.234 0.225

torted beamformer inputs, into the system by mixing the two beam-
former outputs using the BSS filters. The signal distortion measures
(the normalised difference in desired signal spectra between the in-
put and output of the system) show that the combined beamforming
and BSS algorithm exhibits relatively low desired signal distortion
as seen in Table 2, with a typical mean value of -25dB during speech
utterances. There is a small trend towards less distortion as the input
SINR increases, which is expected as the BSS filters perform less
work to decorrelate the outputs. This is also reflected in the SINR
results in Table 1, where the SINR improvement decreases slightly
with increasing input SINR.

In the second simulation designed to test channel ordering ro-
bustness, the beamformer plus BSS design exhibited no ambiguity
in the output channel ordering. The desired signal was detected con-
sistently in the first output channel, for the 50 trials. This was an
expected result from including the beamformer stage in the system.

6. CONCLUSIONS

A spatially robust adaptive noise reduction algorithm based on spa-
tially robust beamforming and the second-order-statistics version of
the TRINICON-BSS algorithm has been presented and compares
favourably with a perfect knowledge MVDR beamformer while
tolerating significant errors in the assumed desired signal location.
By processing the outputs of a robust beam/nullformer pair through
BSS, it is possible to compensate for assumptions made in the fixed
beamformer design. The algorithm features low signal distortion,
fast convergence and did not exhibit channel ordering ambiguities
common in BSS-type algorithms. In addition, the algorithm avoids
signal leakage issues common with GSC-type algorithms while
maintaining low computational complexity, and does not require
speech activity detection, SINR estimation or interference source
direction information unlike the existing methods in the literature.

As the method described in this paper is robust to channel order-
ing issues, a Wiener filter based post-processor designed using the
outputs of the BSS-system, as described in the work in [19], can be
easily used to remove residual diffuse noise in the system, leading to
a semi-blind multichannel Wiener filter implementation.
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