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ABSTRACT

This paper addresses a new statistical model of binaural signals
and its application to efficient binaural source separation. Binaural
source separation is always required to retain a spatial cue of the
separated sound, such as a head-related transfer function (HRTF).
However, the direct use of an HRTF is not realistic because this
information is normally not known in advance. To cope with this
problem, first, we focus on the difference between signal probability
density functions at both ears, which can be blindly estimated by
using our previous work on higher-order statistics. Next, we derive
a sound-localization-preserved generalized minimum mean-square
error short-time spectral amplitude estimator. Objective and subjec-
tive experiments show the efficacy of the proposed method in terms
of spatial quality.

Index Terms— Binaural source separation, MMSE-STSA esti-
mator, NMF, higher-order statistics, sound localization

1. INTRODUCTION

Audio signal separation has received much attention in signal-
processing research, and many studies have been published in the
last decade. Techniques for signal separation have been developed
for many audio applications, including target speech enhancement
for hearing-aid systems [1] and for controlling each source in a
music tune in interactive 3D audio systems [2]-[5]. In this paper,
we also address such an audio signal separation problem, especially
focusing on a signal provided in a binaural format [6].

Compared with simple multichannel signal processing, binau-
ral signal separation includes a relatively difficult task, namely, ex-
traction of a specific sound while maintaining its spatial properties.
This is because deterioration of the spatial quality of the separated
sound has an adverse effect on human’s 3D audio perception. Several
methods have been proposed for binaural signal separation, mainly
for blind speech separation and enhancement. To preserve a sound-
localization cue such as the interaural level difference, these meth-
ods [7]-[10] apply an equi-binaural spectral gain to both the left and
right ears of the listener, which can be calculated via, e.g., Wiener
filtering (WF) [11] and the minimum mean-square error short-time
spectral amplitude (MMSE-STSA) estimator [12, 13]. These meth-
ods have a drawback that they do not take account of richer bin-
aural information, e.g., waveform modification owing to diffraction
and reflection. Ideally, the best way to enhance it is to explicitly
use an important spatial cue, such as a head-related transfer func-
tion (HRTF) [6]. We have proposed an algorithm [14] to introduce
a user’s HRTF into a multichannel MMSE-STSA estimator but this
method was not a blind system; the accurate measurement of the
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HRTF was required in advance, which is sometimes impossible in
practice.

2. CONTRIBUTION AND RELATION TO PRIOR WORK

In another context of signal separation such as informed source
separation, the authors have proposed a combination [15] of su-
pervised nonnegative matrix factorization (SNMF) [16]-[19] and
a prior-model-adapted generalized MMSE-STSA estimator [20] to
deal with music signal separation. This method requires a certain
supervision such as a music scale of the target instrument, but it ef-
ficiently extracts a target sound composed with an arbitrary melody
from the observed monaural mixture. In this method, thanks to
the higher-order statistics analysis, hidden parameters of the target
statistical model can be estimated in each frequency subband.
Motivated by the above-mentioned prior work, in this paper,
we propose a new spatial-cue-aware binaural signal separation al-
gorithm without knowing the user’s HRTF. The key idea and advan-
tages of the proposed method are summarized as follows: (I) Instead
of using an HRTF, we introduce a target statistical model to express
the difference between user’s left- and right-ear signals. For instance,
if the target sound is located on the left-hand side, the extracted
signal in the left ear will obey a spiky probability density function
(p.d.f.) but the right-ear signal will have a smooth p.d.f. because
of many diffracted waves and the weak direct wave. (II) The sta-
tistical models for each ear can be accurately determined using only
observable data [15]. Thus, the proposed strategy is HRTF-blind and
a new attempt at establishing a statistical HRTF approach. (1II) Us-
ing the same idea as in [10], an equi-binaural spectral gain is derived
on the basis of statistical-HRTF-adapted generalized MMSE-STSA
estimators. This avoids the marked deterioration of spatial quality.

3. CONVENTIONAL METHOD

3.1. Single-Channel Music Signal Enhancement

In our previous work, we proposed single-channel music signal en-
hancement based on the generalized Bayesian estimator with auto-
matic target prior adaptation [15]. Here, we use the SNMF-based
dynamic interference spectrogram estimator and closed-form param-
eter estimation for the statistical model of the target signal based on
higher-order statistics. The details are described below.

3.1.1. Music signal separation by generalized MMSE-STSA estima-
tor with automatic target prior adaptation

We apply short-time Fourier analysis to the observed signal, which
is a mixture of target and interference signals, to obtain the time-
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Fig. 1. Difference in signals at left and right ears.

frequency-domain complex-valued signal
x(f,D)=s(f,D+n(f, ), QY]

where x(f, 7) is the observed signal, s(f, 7) is the target signal, n(f, 7)
is the interference signal, f is the frequency bin number, and 7 is the
time-frame index.

For the generalized MMSE-STSA estimator, the amplitude
spectrum of the target signal is estimated on the basis of the MMSE
criterion under a certain target prior. The processed signal 5(f, 7) via
the generalized MMSE-STSA estimator is given by

5(f, 1) = G(f, D)x(f, 1), 2
NTT) .(r(p+0.5) ©0.5-p, 1, -(f, T)))”ﬁ 3
y(f, 1) I'(p) o(1-p, 1, -v(f,1) |

where I'(+) is the gamma function, ®(a, b; k) = F(a, b; k) is the con-
fluent hypergeometric function, 8 is the amplitude compression pa-
rameter, and

G(fi1) =

Wf.= W ADEED (14 &) @)

Here, &(f, ) and (f, 7) are the estimated a priori and a posteriori
SNRs, respectively, which are defined as

&f.0) = ay(f,7 = DG (f,1) + (1 — @)max[y(f,7) = 1,01, (5)
Y1) = DF /Pa(f), (6)

where P;(f) is the estimated interference power spectral density and
«a is the forgetting factor.

In the generalized MMSE-STSA estimator, the a priori statisti-
cal model of the target signal amplitude spectrum is set to the chi
distribution

p(x) = 2¢°T(p)” ¥ exp(~4x%), )

where p(x) is the p.d.f. of signal x in the amplitude domain, ¢ =
p/E{|x*}, and p is the shape parameter. Here, p=1 gives a Rayleigh
distribution that corresponds to a Gaussian distribution in the time
domain, and a smaller value of p corresponds to a super-Gaussian
distribution signal.

In the generalized MMSE-STSA estimator, to calculate ¥(f, 7),
dynamic estimation is required if the interference signal is nonsta-
tionary, and estimation of the shape parameter p, which depends on
the type of target signal, is also required.

3.1.2. Interference estimation by SNMF

The following equation represents the decomposition model of
SNMF using the trained supervision components F(f, k):

A = (Dl Y FE VD + Y HEnUm D, )
k n
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Fig. 2. Conventional and proposed binaural models.

where F(f, k) is a nonnegative element of the supervised basis matrix
trained in advance, which comprises spectral patterns of the target
signal as column vectors, V(f, k) is a nonnegative element of an ac-
tivation matrix that corresponds to F(f, k), H(f, n) represents a non-
negative element of the other basis matrix, which comprises residual
spectral patterns that cannot be expressed by >, F(f, k)V(k, ), and
U(n,7) is a nonnegative element of the activation matrix that cor-
responds to H(f,n). Moreover, k is the basis index of F(f,k) and
n is the basis index of H(f,n). The supervised basis matrix can
be trained using sample sounds of the target signal in the training
process. Hence, ideally, Y, F(f,k)V(k, ) represents the target sig-
nal components and }, H(f,n)U(n, ) represents the other compo-
nents different from the target signals after the decomposition. Thus,
(S, H(f,m)U(n,1))? is regarded as a good estimate of Py(f) in (6)
in the time-frequency grids.

4. PROPOSED METHOD

4.1. Motivation and Strategy
In binaural source separation, it is desirable to use binaural cues such
as an HRTF to improve the separation performance. However, this
is difficult because we cannot obtain the HRTF of an unknown user
blindly. Therefore, considering the HRTF from a statistical view-
point, we efficiently express binaural cues using a statistical model
based on the chi distribution. First, in the binaural signal, the p.d.fs.
of the signals of each ear are assumed to be different by the influ-
ence of the difference in the signals arriving at each ear, and we can
obtain a binaural cue based on the difference in these p.d.fs. For ex-
ample, Fig. 1 shows amplitude of left- and right-ear signals of cello
in 6 kHz subband, where the sound comes from the left-hand side.
As shown in this figure, the left-ear signal contains several dominant
components, which yields spiky p.d.f., but nothing in the right ear.
Next, we introduce the chi distribution to represent the p.d.f. of each
ear. By applying the target prior adaption algorithm [15] to each ear,
it is possible to obtain suitable parameters of the p.d.fs. automati-
cally. This means that we can convert the conventional deterministic
HRTF estimation problem into a parameter estimation problem of
the corresponding statistical model (see Fig. 2). This can also enable
adaptation to unknown users.

However, there is a problem when we apply this strategy
to a binaural source separation system. Generally speaking, a
statistical-model-based source separation method (e.g., the gen-
eralized MMSE-STSA estimator) only provides the statistically
fluctuating spectral gains for each of ears independently. However,
the fluctuation of the gain function in interaural level differences at
the left and right ears causes the deterioration in sound localization.
To resolve this problem, we derive a new optimal spectral gain that



minimizes the residual interference power in terms of the MMSE
under the condition that the spectral gains are equivalent in both
ears. Hereafter, we call this gain the equi-binaural optimal spectral
gain.

4.2. Signal Mixture Model

We consider a mixing model with two inputs, i.e., two ears, and
assume that the observed signal contains the target signal and an
interference signal. Hereafter, the observed signal vector in the time-
frequency domain, z(f, 7) = [x_(f, 7), xg(f, 7)], is given by

z(f,7) = h(f)s(f, 1) + n(f, 1), (&)

where h(f) = [hL(f), hr(f)]T is the column vector of the transfer
functions between the target source and each ear, s(f,7) is the target
signal component, and n(f,7) = [n.(f,7), nr(f,7)]T is the column
vector of the interference signal. Throughout this paper, the sub-
scripts * (+ = {L,R}) represent the signals obtained at the left and
right ears, respectively.

4.3. Derivation of Equi-Binaural Optimal Spectral Gain

The derivation of the equi-binaural optimal spectral gain is described
below. This is the extended version of [10] for a generalized cost
function, and can be formulated as the minimization problem of the
following error e:

e =E[{In(Ns(£, 0 = G Db (0P
+ {l (N5, DF = G Dl (£ D

where G(f, 1) is the equi-binaural spectral gain, which is considered
as a variable. The optimization problem based on (10) is given by

Gopt (f ’ T)

(10)

=argmin E[{Ji (N3, 0P ~ (G D=Gulf. )+ Gulf Ol (o

+ {(IhR (N5 P~ (G (. D =Gr(f. N +Gr(f D L (£ PV
=argmin [ (N3(. ) = (GLU D (. D F

+ R (Ds(f, D = (Gr(f, DIxR(f DI P
+H(G (. 1) - Gl (f PP
HG(f, 1) - GR(f D) (f,DPY + ZC] , an

where G (f, 7) is the equi-binaural optimal spectral gain to be es-
timated, and G_(f, 7) and Gg(f, 7) are individual spectral gains for
the L and R ears, respectively, which are auxiliary parameters for
calculating an approximate solution of Gy (f, ) because the direct
Bayesian estimation of Gy (f, 7) is difficult. In addition, C is related
to the correlation between the estimation error and the observed sig-
nal in each channel when we estimate the target speech signals in
the L and R ears using the parameters G (f, 7) and Gr(f, 7), and is
defined by

C =(G*(f,1) - G{(f, 7))

AGLU DD = b (f, Ds(f D (f, DF

+{G(f,0) - GR(f, 1)

AGRS DR DY = lhe(f, DL DR (SDP. (12)
We discuss the minimization of (11). First, the 1st and 2nd terms
on the right-hand side correspond to the problem of target signal
estimation in each ear. These terms can be minimized if we obtain
the optimal values of GL(f,7) and Gr(f, 7) using the generalized
MMSE-STSA estimator described in Sect. 3. Next, C in the 5th term

on the right-hand side can be disregarded if the parameters G (f, 7)
and Ggr(f, ) provide an accurate estimate of the target signals by

496

approximately considering C to be negligible. Hence, the residual
3rd and 4th terms, i.e., {(G*(f, T)—Gﬁ(f, N (f DEP +{(GP(f, 1) -
G/li( £ )|xr(f, T)}%, should be minimized. This problem can be
formulated as

Gopl(fs T)
 argmin B (&0 -G (fo(f, D
+H(G(f.0) = Gy (F )R DPY (13)

subject to

Gy (f. 1) =argmin E [ (Hs(f P ~GLU D L ONY], (14
Grp(f-7)=argmin & [{rR ()£, P =G (£, DI (£ DY), (15)

where Grop(f, 7) and Grop(f, 7) are the L- and R-ear optimal spec-
tral gains, respectively.

To solve (13), we first obtain Gy (f, 7) and Ggep(f, 7) from the
generalized MMSE-STSA estimator in (14) and (15), then by sub-
stituting them into (13), we solve the following equation in G(f, 7):

de
aG(f,7)

=G (£, (f, D = G (f Dl (f D
+ G Dl (f, D = Gy (f, Dl (f, TP
-0. (16)
The solution of (16) is given by
G DL PP + Gl (f Dl PP )
b (f, PP + [ (f, TP '

Gop(fi1) =

an

4.4. Shape Parameter and Kurtosis

In (17), we need to calculate Gy o (f,7) and Grop(f,7), Which in-
clude a shape parameter p that should represent the a priori distribu-
tion of the target signal. In Sects. 4.4 and 4.5, we describe how to
blindly estimate p.

Regarding the chi distribution p(x) in (7), the mth-order moment
can be written as

Hn() = fo Y pods = r(’;—(;f)ﬁ. (18)
Then, the kurtosis « of the chi distribution is calculated as
K= pa(D/15(x) = (p + D/p. 19
Therefore, the shape parameter p is given by
p=k=1" (20)

From this relation, the shape parameter of the target signal can be
estimated by obtaining its amplitude-domain kurtosis value. In gen-
eral, however, it is difficult to directly estimate the kurtosis of a target
signal because of its contamination by additive interference signals.

4.5. Estimation of Hidden Target Kurtosis and Gain Function
In our previous work, we proposed an algorithm for target kurtosis
estimation in additive signals, which can be derived from the closed-

form relation in higher-order statistics. In this algorithm, the resul-
tant kurtosis of the target amplitude spectrum is estimated as

_Ha(A) s (Za(HU))+45(3,(HU).) =4 (A)pa (3, (HU).)
1A+ (Z,(HU)) =22 (A (Z,(HU).)

* >

@n



where we ignore the indexes f and 7 for saving the space. For the
detailed derivation of (21), see Ref. [15].

The shape parameter of the target signal p.d.f. at each ear can be
estimated using the kurtosis and (20). Therefore, the equi-binaural
optimal spectral gain estimated by the proposed method is obtained
as follows by substituting (3) into (17):

e (f, DPEGLU, DPPT (6 - 1) +0.5)
I (P + (£ DL (DT (k. = DY)
©0.5- (k. — D', 1, -VL(f, 7))
O - (ke — DL L =7(f, 7))
b (f, DO (f, DPPT (k= 17! +0.5)
+
(b (s DP? + (£ DPP R (L DT (G = D7)
005 - (ke = D', 1, (f, r))}”ﬁ
O(1 - (kg = D7, L =R(f, 7))

The final output is given by 5.(f, 7) = Gop(f, DX, (f, 7).

Gopt(f, T) = {

(22

5. EVALUATION EXPERIMENTS

5.1. Experimental Conditions

In this experiment, we used four binaural instrumental signals,
namely, an oboe, clarinet, cello, and piano, where the target instru-
ment s(f, 7) is the oboe (each melody part is depicted in [15]). These
signals were artificially generated by a MIDI synthesizer and the di-
rections of arrival of these signals were set from —90° to 90° with
15° intervals by using the corresponding HRTF h(f). The HRTFs
were selected from the open database of the “Samurai” dummy head
[21]. The observed signals were produced by mixing two sources
selected from the target signal and the other three signals with the
same power. In this observed signal, the target and interference
signals were located in the same direction. In the estimation of
the interference signal using SNMF, we used artificial clean MIDI
sounds of the target instrument without an HRTF as supervision for
the training process. The training sounds contained two octave notes
that covered all the notes of the target signal in the observed signal.
The sampling frequency of all signals was 44.1 kHz. Spectrograms
were computed using a 92-ms-long rectangular window with an
11-ms-long overlap shift. Moreover, the number of trained bases
was 100 and the number of other bases was 50. The forgetting factor
a was 0.97, and the amplitude compression parameter 8 was 1.0.

5.2. Objective Experiment

In the objective experiment, we compared six methods, i.e., SNMF
(SNMF) [19], the equi-binaural spectral gain via WF (Equi-gain
WF) [9], the equi-binaural spectral gain via the MMSE-STSA es-
timator (Equi-gain MMSE-STSA) [10], the minimum-gain-based
MMSE-STSA estimator (Gain-min MMSE-STSA) [8], the gener-
alized MMSE-STSA estimators independently applied to each ear
(Generalized MMSE-STSA), and the equi-binaural spectral gain
via the generalized MMSE-STSA estimator (Proposed method).
Every method uses the same SNMF as the interference estimator.
We used the signal-to-distortion ratio (SDR) defined in [22] as the
evaluation score. The SDR indicates the overall quality of the sep-
arated target sound, and is high in the case of high separation, low
artificial distortion, and low spatial distortion.

Figure 3 shows the average SDRs for each method and each di-
rection. From these results, we can confirm that the separation per-
formance of the proposed method is better than those of the other
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Fig. 4. Result of XAB test for evaluation of spatial quality.

methods. This result indicates the efficacy of introducing the flexible
a priori statistical model of the target signal and equi-binaural spec-
tral gain. The simple MMSE-STSA estimators (Equi-gain MMSE-
STSA and Gain-min MMSE-STSA) also assume the fixed a priori
model of the Gaussian distribution but the assumption is not appro-
priate for representing a music signal and a spatial difference be-
tween both ears. In contrast, the proposed method automatically
chooses a spikier p.d.f. (o < 1) for the ear closer to the source loca-
tion and a smoother p.d.f. (o ~ 1) for the opposite ear. These p.d.fs.
match the binaural target.

5.3. Subjective Experiment

‘We next conducted a subjective test to evaluate the performance of
the proposed method, focusing on the human impression of the sep-
arated signal from the viewpoint of spatial quality. In the subjective
experiment, we employed the XAB method and compared two meth-
ods, i.e., Generalized MMSE-STSA and Proposed method. The par-
ticipants in the experiment comprised four males and two females.

Figure 4 shows the result of the subjective experiment, which
indicates that the proposed method using the equi-binaural spectral
gain markedly outperforms Generalized MMSE-STSA. Therefore,
we confirmed the effectiveness of using the equi-binaural spectral
gain to improve the spatial quality.

6. CONCLUSIONS

In this paper, to address the effect of statistical models for both
ears on binaural signal source separation, we applied the general-
ized MMSE-STSA estimator with automatic prior adaptation to a
binaural signal. The proposed method of binaural signal separa-
tion using equi-binaural spectral gain can also improve the sound-
localization properties. From the results of and subjective experi-
ments, it was found that the proposed method outperforms conven-
tional methods from the viewpoint of separation performance and
sound-localization preservation.
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