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ABSTRACT 
 
This paper presents a novel informed audio source 
separation algorithm given a limited binary time-frequency 
annotation. Assuming that all the sources can be represented 
using a low-rank model, we derive an objective function to 
minimize the rank of the source spectrogram, and the error 
between the target and the estimated coefficients. Especially, 
we apply the nuclear norm and l1-norm, which allow a 
relaxation of the model, and represent them in the convex 
formulation. Experimental results show that the proposed 
method achieves better and more robust separation 
performance than the state-of-the-art under the incomplete 
and inexact annotation condition. 
 

Index Terms— Informed source separation, limited T-F 
annotation, nuclear norm, augmented Lagrangian multiplier 
 

1. INTRODUCTION 
 
Informed source separation (ISS) is an approach to increase 
the separation performance using additional information 
about the sources. Here, this information can be provided in 
various forms. For example, users can guide the separation 
procedure by means of humming [1, 2] or tapping [3], or by 
providing the score [4], the contour of the fundamental 
frequencies [5], or the lyrics (when the target source is vocal) 
[6]. 

A time-frequency (T-F) annotation for each source is 
also useful information, and has proven to achieve a 
significant separation performance gain. Bryan et al. 
presented an interactive sound source separation method [7] 
using probabilistic latent component analysis [8]. Lefèvre et 
al. took a similar approach using non-negative matrix 
factorization [9, 10], and more recently suggested a convex 
formulation using a nuclear-norm minimization technique 
[11]. These approaches are based on the assumption that the 
magnitude spectrogram of each source can be represented 
using a low-rank model. 

To make it valid for the real-world situation, however, 
the following characteristics of the user annotation must be 
considered. First, the annotation is incomplete – that is, not 
all the T-F coefficients can be annotated. Moreover, the user 
cannot provide the exact target values, but only a binary 
annotation to indicate that the source is present or not for 
specific T-F regions. Finally, it is likely that some errors are 
present in the user annotation. 

In this paper, we propose a novel ISS method to solve 
the abovementioned problems when a user-provided T-F 
annotation is limited. To this end, we first roughly set the 
target of each source from the binary annotation. With the 
low-rank model of each source using the nuclear-norm 
minimization, we also minimize the l1-norm between the T-
F coefficients of the source and the target to increase the 
robustness to the annotation error. 
 

2. ISS WITH T-F ANNOTATION 
 
2.1 Problem setting 
In this section, we specify the problem that we aim to solve. 
Let us say we have an input mixture x, which is the sum of 
single sources sk where k denotes the index of each source.  
The short-time Fourier transforms (STFTs) are then denoted 

as X ∈ ℂF×T and Sk ∈ ℂF×T, respectively, where F and T 

denote the number of the frequency bins and the time frames, 
respectively. The magnitude spectrograms are denoted as 

X  X  and k kS  S , respectively. In addition, we define 

the target values of the k-th source as 

  ,Ω , , | , Ω
kk k f t kT T f t  , where Ωk  is the set of the 

annotated T-F coefficients for the k-th source.  
Unfortunately, it is practically impossible to expect the 

user to provide the exact target values ,ΩkkT . We assume 

instead that what the user provides is just a binary 

annotation ,ΩkkB  where it is set to 1 if the user guesses the 

k-th source is ‘present’ in Ωk , and 0 when it is ‘absent’. We 

can thus roughly set T as follows based on B: 
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Fig. 1. Overall framework of the informed source 

separation with T-F annotation. 
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where Ωn  is the number of k for which is ,Ω 1
kkB  .  

 
2.2 Proposed method 

To estimate each sk from x and ,ΩkkT , we assume that the 

objective function must satisfy the following three necessary 
conditions: 
 
a) The difference between the obtained mixture and the sum 
of the estimated sources must be minimized. 
b) The difference between the target and the estimated 
source values must be minimized. 
c) The T-F representation of each source must be 
represented by a low-rank model. 
 

To make the problem simple, we handle all the sources 
and the mixture in the magnitude spectrogram domain, and 

thus a) and b) can be approximated as kk
S X  and 

,Ω ,Ωk kk kS T , respectively. For c), we apply the concept of 

nuclear-norm minimization to approximately represent the 
low-rankness of the matrix. Based on the abovementioned 
conditions, we derive the objective function as follows: 
. 
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where 
*

 and 
1

 denote the nuclear-norm and the l1-

norm, which are the sum of the singular values and the 
absolute values, respectively. λ is a parameter that controls 
the relative weights between the two terms.  In this objective 
function, the conditions a) and b) are applied by means of a 
constraint and l1-norm minimization. The effectiveness of 
this approach will be discussed in Section 2.4. 

 
2.3 Augmented Lagrangian multiplier (ALM) method 
The ALM method is often used to deal with the nuclear-
norm and l1-norm minimization such as in robust principal 
component analysis [12]. First, (2) can be equivalently 
rewritten as 
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According to the ALM method, we need to solve the 
following problem: 
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. 

where Λk ∈ ℝF×T, Mk ∈ ℝF×T, and N ∈ ℝF×T are the ALMs. 

Since the number of variables is three or S, E, and ZΩk, they 
are optimized alternately. Here we explain the optimization 
method for each variable, and the overall framework of the 
ALM method for (4) is described in Algorithm 1. 
 
Solution for S: When E and ZΩk are fixed, (4) can be 
simplified as follows: 
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.  
and the optimal solution for S is given by 
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─────────────────────────────── 

Algorithm 1. ISS with T-F annotation 

─────────────────────────────── 

Set ρ = 1.1 and μ = 0.01. 

Initialize E, Z, Λ, M, N = 0. 

Until converge 

     for k 

update Sk by (6) and (7). 

update Zk.Ωk by (9). 

update Ek by solving (10). 

end 

for k 

          update Λk by  k k k kE S    . 

          update k  by   k k k k kZ S T     . 

      end 

update   by  kk
X S  . 

      update μ by   . 

end 
─────────────────────────────── 
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where     , t | , tk kf f   .  

 
Solution for ZΩk: With S and E fixed, (4) is simplified as a 
function of ZΩk, and can be expressed as 
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and the optimal solution for ZΩk is given by 
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where   is a shrinkage operator  a   

   sgn max ,  0a a   and applied element-wisely for 

matrices.  
 
Solution for E: With S and ZΩk fixed, (4) is simplified as a 
function of E, and can be written as 
 

2

*

1
min    .

2
k k k k

E
k k F

E E S
 
    
 
 

 



      (10) 

 

Candès and Li suggested that (10) can be solved by solving 
the following function [12]: 
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where k  and k  are the ordered singular value matrices 

of Ek and 
1

k kS  


. The optimal   is given by 

 

 1 .k k                             (12) 
 

The optimal Ek can then be obtained as k k kQ R , where 

k k kQ R  is the singular value decomposition of 
1

k kS  


. 

 
2.4 Comparison with Lefèvre’s method 
Recently, Lefèvre et al. proposed the similar method [11], 
and it is worth to compare it with the proposed method. 
Basically, Lefèvre’s method aims to solve the following 
objective function1.  
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1 To be precise, Lefèvre’s method solves the problem using the 

power spectrograms, while we use the magnitude spectrograms. In 

our experiments in Section 3, however, we used the magnitude 

spectrograms for Lefèvre’s method as well because they achieve 

the better performance. 

where η is a parameter for the relative weights. It is noted 
that the objective functions (2) and (13) are quite similar, 
and both contain all the conditions described in 2.2. 
However, the condition b) is strictly constrained in (13), or 

, ,k kk kS T   , whereas in (2) it is given as one of the terms 

in the objective function, i.e., , ,
1k kk k

k

S T  , which 

allows tolerance. 
The advantage of the proposed method is clear when the 

user makes some errors in the annotation, because (13) does 
not allow any tolerance. In case of (2), the errors or the false 
annotations are considered as outliers, making the low-rank 
modeling difficult, and thus are ignored by l1-norm 
minimization. The effectiveness of the proposed method 
will be discussed more in the next section. 
 

3. EXPERIMENTS 
 
3.1 Dataset 
In order to evaluate our algorithm, we used the SISEC 
database [13], which contains five pieces of professional 
music recordings of 10-25s length. Because this database 
was recorded in a multi-track format, we mixed each multi-
track recording down to a two-track format of the vocal (k=1) 
and the accompaniment (k=2), where the latter contains all 
the non-vocal sources. All the tracks were resampled to 
16kHz to reduce the computational burden. Finally, we 
mixed them so that the input signal should have 0dB and -
10dB vocal-to-accompaniment ratio (VAR) to compare the 
robustness of the algorithms. 
 
3.2 Evaluation 
We calculated the signal-to-distortion ratio (SDR) using the 
BSS-EVAL 3.0 as an evaluation metric [14]. To evaluate 
the robustness under various mixing and annotation 
conditions, we experimented with the various annotation 
rates (ARs), and the false annotation rates (FARs), which 
are defined as 
 

the number of the annotated coefficients of 
AR

the total number of the coefficients of  

kk

kk

S

S




, 

the number of the false-annotated coefficients of 
FAR

the number of the annotated coefficients of  

kk

kk

S

S




, 

 

where ‘false annotation’ denotes ,Ω 1
kkB  when the source 

is actually absent, or ,Ω 0
kkB   when it is actually present. 

In general, the separation task would become easier under 
the high AR and the low FAR conditions. 
 
3.3 Experiment settings 
For the T-F representation, we used the STFT with the 
hamming window of 512 samples and the 256-sample 
overlap. The annotation is provided by randomly selecting 
the T-F coefficients with the probability of AR. ,ΩkB  is set 

to 1 if ,Ω ,Ωk k
k k k

S S 


 , and 0 otherwise, where S  is the 

magnitude spectrograms of actual source. For the 

normalization factor of λ, we adopted ' max( , )λ λ F T , 

as suggested by Candès and Li [12]. 
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3.4 Results 

First, we examined the effect of the weight parameter λ . As 
mentioned in Section 3.3, we decided the normalization 

factor and tried to find the optimal 'λ . Table 1 and 2 show 

the separation performance as a function of 'λ . The results 

from Table 1 indicate that with too large 'λ  the 
performance degrades when the annotation is not correct. 

This makes sense because 'λ  determines how close the 
separated source is to the target, and therefore it causes a 
negative impact when the target is not exact. On the other 

hand, Table 2 shows that 'λ  does not affect the 
performance much with regard to AR. From these 

experiments, we set the value of 'λ  to 2. 
For the next experiment, we compared our method to the 

Lefèvre’s. We set the value of η to 0.1 as the authors 
proposed [11]. Fig. 2 illustrates the mean SDR of the two 
methods. When a user-guided annotation is complete and 
exact (i.e., 100% AR, 0% FAR), both algorithms achieve 
high SDR (Fig.2(a)), but the proposed algorithm is slightly 
better when the energy difference between the sources gets 
larger (Fig.2(b)). With errors present in the annotation or 
nonzero FAR, however, the proposed method yields 

significantly higher SDR (Fig.2(c)), and the performance 
gap gets even wider when the VAR becomes lower 
(Fig.2(d)). In particular, comparing the easiest case (Fig.2(a)) 
with the hardest one (Fig.2(d)), the performance decrease is 
much less severe with the proposed method (8.94dB → 
7.50dB at 20% AR) than with the state-of-the-art (8.67dB 
→ 4.22dB). These results imply that the proposed algorithm 
is significantly more robust under real-world situations. 
 

4. CONCLUSION 
 
In this paper, we proposed a novel method for informed 
source separation using a low-rank model, assuming 
incomplete T-F annotations are given by a user. In particular, 
we showed that the use of l1-norm, which allows the errors 
from the annotation, can dramatically increase the 
robustness of the separation algorithm. For future work, we 
plan to generalize the optimization framework by using the 
Schatten p-norm and the lp-norm. Moreover, we will extend 
the proposed method to handle multi-channel signals. 
 
 
 

Table 2. Performance as a function of 'λ  for different 

AR conditions. FAR is set to 10%. 
 

mean SDR 
'λ  

0.1 0.2 0.5 1 2 5 10 

AR 

(%) 

10 1.6 2.5 4.3 5.8 6.7 6.6 6.0 

20 2.5 3.8 6.0 7.5 8.0 7.4 6.9 

40 3.7 5.5 7.8 8.7 8.9 8.4 7.8 
 

 

 
 

 

 

 

Table 1. Performance as a function of 'λ  for different 

FAR conditions. AR is set to 20%. 
 

mean SDR 
'λ  

0.1 0.2 0.5 1 2 5 10 

FAR 

(%) 

0 3.1 4.7 7.2 8.3 8.9 9.3 9.3 

10 2.5 3.8 6.0 7.5 8.0 7.4 6.9 

20 1.9 2.8 4.6 5.9 6.2 5.2 4.7 
 

 

 
 

 

 

 

  
.(a) 0% FAR , 0dB VAR                                                           (b) 0% FAR, -10dB VAR 

 

   
(c) 10% FAR, 0dB VAR                                                           (d) 10% FAR, -10dB VAR 

 

Fig. 2. Comparison between the Lefèvre’s [11] and the proposed methods. 
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