
DESIGNING MULTICHANNEL SOURCE SEPARATION BASED ON SINGLE-CHANNEL
SOURCE SEPARATION
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ABSTRACT

In this paper, an extension of independent vector analysis (IVA),
model-based IVA, is proposed for multichannel source separation.
For obtaining better source models, we introduce a single-channel
source separation method, and utilize the outputs as source variances
in time-frequency-variant Gaussian source model. The demix-
ing matrices are estimated in the same way as a state-of-the-art
IVA method, auxiliary-function-based IVA (AuxIVA). Experimen-
tal evaluations show that the proposed approach is effective and
improves the source separation performance of IVA. In addition,
several post-filters aiming to realize multichannel Wiener filter
(MWF) are investigated. This setup proves to further increase the
performance of IVA. The presented method shows a potential to
provide a general way to improve the separation performance from
single-channel source separation to multichannel source separation.

Index Terms— independent vector analysis, blind source sepa-
ration, speech source model, speech enhancement

1. INTRODUCTION

Blind source separation (BSS) is a technique to extract desired
sources from mixtures with no knowledge of either the mixing
process or the sources. In the convolutive overdetermined case,
independent component analysis (ICA) in the frequency domain [1]
has been a common source separation method. In ICA, source sep-
aration is obtained by seeking for statistically independent sources,
which are represented via statistical source models. More recently,
a multivariate variant of ICA has been developed, which is inde-
pendent vector analysis (IVA) [2, 3, 4], where all the frequency
components are modelled as stochastic vector variables and the
sources are separated vector-wise instead of frequency-wise, as it
occurs in ICA. IVA is an advantageous approach since, theoretically,
it avoids permutation ambiguity due to the dependencies over the
spectral channels represented in the source model.

In conventional IVA, an identical source model, typically a
spherical multivariate super-Gaussian distribution, is assumed for
all sources [2, 3]. However, it is not correct in several cases. For
example, in speech and noise separation tasks, the sources’ spectra
have quite different characteristics. Speech spectrum is temporally
non-stationary and has a structure caused by pitch and formants,
while surrounding noise has broad band spectrum and may be tem-
porally stationary. Therefore, the common source model in IVA
does not reflect the differences of source characteristics between
speech and noise, and consequently the separation performance
could be insufficient. Another problem is diffuse noise. It is well
known that using only a multichannel linear filter (beamformer) is

not sufficient to suppress diffuse noise, so post-filtering can improve
its performance [5]. BSS methods also have a limited capability to
reduce diffuse noise.

Based on these motivations, we introduce in this work single-
channel source separation as a module to provide a better source
model in IVA. Including spectral subtraction, most single-channel
source separation methods utilize the difference of spectrogram
characteristics in each source. Hence, in this work, the source
models are time-frequency-variant Gaussian distributions, which
is similar to non-negative matrix factorization with Itakura-Saito
divergence [6] or its multichannel version [7, 8]. From now on,
this IVA extension will be called model-based IVA. In this work,
the source model variances are computed from spectral subtraction,
but we must note, to emphasize generality of our approach, that the
variances could be provided from any other single-channel source
separation method. Moreover, we also discuss how to design a post-
filter based on the same single-channel source separation approach.
The proposed method, model-based IVA, is evaluated without and
with post-filtering, in a two-channel speech and noise separation
task.

2. FREQUENCY-DOMAIN BSS

BSS in frequency-domain can be formulated as follows. We assume
here that M source signals are observed by M microphones, and
their short-time Fourier transform (STFT) representations are ob-
tained. In the frequency-domain approach for convolutive mixtures,
dependencies between the source signals and observed mixtures is
modeled as a linear mixing process:

Xτω = AωSτω, (1)

where Xτω = [X1τω, . . . , XMτω]T denotes theM×1 observation
vector and Sτω = [S1τω, . . . , SMτω]T the M × 1 source vector
at frequency channel ω in time frame τ , and Aω is the unknown
mixing matrix associated with channel ω. The vector component
Xmτω denotes the mixture observed with microphone m and Smτω
the mth source signal at channel ω at time frame τ . The estimated
source signals Y τω are computed by the linear demixing process:

Y τω = WωXτω, (2)

where Y τω = [Y1τω, . . . , YMτω]T and Wω is the demixing ma-
trix. The source separation problem involves finding Wω based on
observations Xτω .
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3. EXTENSION OF INDEPENDENT VECTOR ANALYSIS

3.1. Source Model of Conventional Independent Vector Analysis

In IVA, the sources to be separated are modelled by means of statis-
tical source models. Besides, the dependency between the spectral
channels of each source is represented in IVA by using a multivari-
ate probability density function py(Ỹ mτ ) as source model, for a
source-wise vector Ỹ mτ = [Ymτ1, . . . , YmτΩ]T , where Ω is the
total number of spectral channels and m is the number of source
channel. Conventionally, IVA methods use spherical, time-invariant,
and super Gaussian distributions [2, 3], such as

py(Ỹ mτ ) ∝ exp

{
−K

√
‖Ỹ mτ‖22

}
, (3)

where K is a time-invariant constant and ‖ · ‖2 denotes the L2 norm
of a vector.

3.2. Model-based Independent Vector Analysis

IVA has been previously evaluated with time-variant source distribu-
tions in [9, 10], where distribution variances were assumed constant
across frequency channels. In the present paper, we propose a time-
frequency-variant Gaussian distribution such as

py(Ymτω) ∝ 1

σ2
mτω

exp

{
−Y

2
mτω

σ2
mτω

}
, (4)

where σ2
mτω is the variance of mth source at time frame τ and fre-

quency ω. In this work, we assume that we have a single-channel
source separation method which separates a single channel observa-
tion into M source estimates. Then, the variances σ2

mτω are calcu-
lated as,

σ2
mτω = |Ŝmτω|

2
, (5)

where Ŝmτω is the output from single-channel source separation for
the mth source at time frame τ and frequency ω.

3.3. Objective Function of Independent Vector Analysis

In IVA, the demixing matrices are iteratively estimated by minimiz-
ing the following objective function over Wω ,

J1 =
∑
m

1

T

∑
τ

G(Ỹ mτ )−
∑
ω

log det |Wω| (6)

This function is derived from the Kullback-Leibler divergence
between the p.d.f of the observed signal and that of the source model
[2, 3, 4]. G(Ỹ mτ ) is called contrast function and it is computed
as G(Ỹ mτ ) = − log py(Ỹ mτ ), where py(Ỹ mτ ) is the multivari-
ate p.d.f of the source model. T is the total number of frames. The
minimization of (6) is equivalent to maximum likelihood (ML) esti-
mation.

Given the proposed source model in (4), the objective function
J1 can be rewritten as,

J2 =
∑
ω

(∑
m

1

T

∑
τ

‖wH
mωXτω‖22
σ2
mτω

− log det |Wω|

)
, (7)

which is the objective function of model-based IVA, where wH
mω is

the mth row of the demixing matrix Wω and H denotes Hermitian
transpose.

Fig. 1. Block diagram of the single and multichannel source separa-
tion system with post-filter setup proposed. X denote the observa-
tion vector and Y ′ the estimated sources vector.

3.4. Update Rules for Demixing Matrix

Traditionally, IVA algorithms have as standard solution the natural
gradient update [2, 3, 4]. However, this kind of solution involves a
trade-off between convergence speed and stability. New, more effec-
tive update rules based on auxiliary function technique were devel-
oped first for ICA [11] and later extended to IVA with the AuxIVA
method [12].

The AuxIVA method involves two alternative update steps. In
the extension of AuxIVA with the new source model proposed, the
update rules are as follows. First, the weighted covariance matrices
Vmω are once calculated for all ω as

Vmω =
1

T

∑
τ

(
XτωX

H
τω

σ2
mτω

)
(8)

Then, the demixing matrices are updated. Note that a closed-
form solution for updating wmω in eq. (7) simultaneously has not
been proposed yet. Instead, we consider an update of only wmω

while keeping other wlω(l 6= m) fixed. Therefore, the update rules
for demixing matrix, applied for all ω, are:

wmω ← (WωVmω)−1em, (9)

wmω ←
wmω√

wH
mωVmωwmω

, (10)

where em is a unit vector with the mth element unity em =
[0, . . . , 1, . . . , 0]. The update rules are applied iteratively until
convergence is achieved.

4. POST-FILTER DESIGN

Experiments conducted on MVDR beamformers indicate that a
single-channel Wiener post-filter can improve their source separa-
tion performance [5]. In the current work, we present an analogous
setup, where the single-channel-based multichannel source sepa-
ration system proposed, model-based IVA, is concatenated with a
time-variant post-filter. This setup is presented in Figure 1. The
sources estimates Y ′mτω are calculated based on the multichannel
estimates Ymτω from model-based IVA as Y ′mτω = HmτωYmτω ,
where Hmτω is the STFT representation of the post-filter applied on
the mth source estimate in time frame τ and frequency channel ω.
In this work, we evaluate three time-variant post-filtersHmτω calcu-
lated based on the multichannel source estimates Ymτω and source
estimates Ŝmτω calculated with a single-channel source separation.
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Wiener filter approach 1

The optimal post-filter in the minimum mean square error (MMSE)
sense is obtained as Wiener filter, which is generally represented as
φss/φyy where φss and φyy are the expectation of the power of the
target signal s and the observation y, respectively. In the first post-
filter, we calculate it as

H(1)
mτω =

|Ŝmτω|
2

|Ŝmτω|
2

+ |Nmτω|2
, (11)

where the noise Nmτω is calculated as Nmτω = Ymτω − Ŝmτω .

Wiener filter approach 2

In the second post-filter, the expectation of the observation power in
Wiener filter is directly calculated as the power of the observation.
For guaranteeing that the post-filter value falls within the range from
0 to 1, simply clipping is applied. Then, it can be represented as

H(2)
mτω = min

{
|Ŝmτω|2

|Ymτω|2
, 1

}
. (12)

Amplitude replacing

Most single-channel source separation techniques estimate the
sources via a time-frequency mask with the original observed
phase. In contrast, model-based IVA is a multichannel linear fil-
ter that estimates not only the amplitude but also the phase. In the
third approach, we try to combine the amplitude estimation from
single-channel source separation and the phase estimation from
model-based IVA. This is achieved with the following post-filter:

H(3)
mτω =

|Ŝmτω|
|Ymτω|

. (13)

Applying single source separation to each of model-based IVA
outputs

As the last noise suppression approach evaluated in this work, we
apply the single-channel source separation technique to each output
of model-based IVA as a post-filter.

5. EXPERIMENTAL EVALUATIONS

5.1. Data

We evaluated our methods on part of the material from the Signal
Separation Evaluation Campaign (SISEC) 2013 [13]. We used in
particular the development set of the two-channel mixtures of speech
and real-world background noise task. This set consists of nine
stereo recordings of a speech source that is contaminated by real-
world diffuse noise. The diffuse noise was recorded in three kinds
of public environments: a subway car, cafeterias and squares. Apart
from the nine stereo mixtures, the set also includes the correspond-
ing source signals (speech and noise) and source images, which are
the convolved versions of each separate source signal observed at the
microphones. All signals of this data set have a duration of 10 s. and
their sampling frequency is 16000 Hz.

5.2. Setup

The system proposed in this work uses a single-channel source
separation method to improve multichannel source separation per-
formance. The single-channel source estimates used in this work
were calculated with the spectral subtraction method implemented in
VOICEBOX [14]. The method was used with the preset parameters.
The source estimates calculated with spectral subtraction were used
to provide source variances to model-based IVA that was imple-
mented on AuxIVA [12]. AuxIVA was applied on STFTs calculated
in 2048-sample Hamming windows with 50% overlap. An identity
matrix was used as initial value for the demixing matrix, and the
algorithm was iterated 20 times to ensure convergence.

The proposed single-channel-based multichannel source sepa-
ration system is evaluated without a post-filter and with the three
post-filters proposed in Section 4. For comparison, we also evalu-
ate the proposed system performance when the post-filter is substi-
tuted with spectral subtraction. Since the system is evaluated in a
speech enhancement task, post-filtering is applied to the output of
model-based IVA corresponding to the speech source. The output
corresponding to the diffuse noise source is discarded.

5.3. Evaluation

The speech enhancement task was evaluated using the Signal to Dis-
tortion Ratio (SDRi) computed with the BSS Eval Matlab toolbox
[15, 16]. This measure evaluates estimated source images and it was
one of the evaluation metrics of SISEC 2013. However, this kind
of energy ratio’s evaluation criteria cannot explain certain auditory
properties [17]. Therefore, the experiments were also evaluated with
other measure, frequency-weighted segmental signal-to-noise ratio
(fwSNRseg) [18]. This measure has proven to have high correlation
with subjective assessments on speech quality [19].

Estimates of the stereo speech source images were evaluated by
averaging over the two channels. The final SDRi and fwSNRseg
values were obtained after averaging over all trials within each of the
three noise background conditions and finally averaging over these
three cases.

5.4. Results

The systems evaluated in the current work include baseline single-
channel (spectral subtraction) and multichannel (conventional IVA)
source separation systems, and the proposed single-channel-based
multichannel source separation system, model-based IVA, which is
evaluated by itself, with several post-filters and with spectral sub-
traction. The results are presented in Figure 2. We can see that
the baseline single-channel system performance with spectral sub-
traction is better than the baseline multichannel system performance
with conventional IVA. The multichannel system performance im-
proves when the single-channel estimates are used as source vari-
ances in model-based IVA. Evaluation with the fwSNRseg measure
suggests that model-based IVA performance was better than spectral
subtraction, SDRi favoured spectral subtraction. This is because the
evaluation measures emphasise different qualities in the separated
signal. Listening to the audio samples indicated that spectral sub-
traction removes more background noise than model-based IVA but
introduces audible distortion in the speech signal.

Model-based IVA performance improves when the output signal
is post-filtered, and both evaluation measures indicate that model-
based IVA performance with post-filter H(1) is better than model-
based IVA or spectral subtraction performance. Model-based IVA
performance with post-filter H(1) is close to the performance of
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Fig. 2. SDRi and fwSNRseg results of the original mixtures and
spectral subtraction technique (for reference), and the methods under
comparison: conventional IVA, model-based IVA and model-based
IVA with post-filters H(1), H(2) and H(3); and model-based IVA
with spectral subtraction post-processing.

model-based IVA with spectral subtraction post-processing. Based
on the differences between SDRi and fwSNRseg results, it seems
that both Wiener filters H(1) and H(2) are more efficient in noise
reduction than H(3).

6. DISCUSSION

In this paper, we presented model-based IVA that extends conven-
tional IVA methods with a time-frequency-variant Gaussian source
model. The source variances were calculated based on single-
channel source separation outputs. The model-based IVA was
evaluated in a speech enhancement task with two-channel speech
and noise mixtures. The comparison between conventional IVA and
model-based IVA validated the hypothesis that IVA performance in
source separation can be improved by using improved source models
even though they are provided by a simple method such as spectral
subtraction. While the current work focused on using single-channel

source separation to improve multichannel source separation, the
source variances need not be determined in this manner. Future
work on source model variances or better source models also can
further improve IVA performance.

The multichannel system proposed in this work was completed
with a single-channel post-filter. Model-based IVA was evaluated
with three post-filters; all of them improved the performance of
model-based IVA. The post-filtering improvement is more promi-
nent with SDRi. This suggests that the post-filtering solutions
proposed improve the source separation performance of model-
based IVA by increasing the amount of background noise removed.
The best performance over the three post-filters was observed with
H(1). The best overall performance was obtained when spectral
subtraction was applied on the model-based IVA output. However,
to achieve this result, we had to apply spectral subtraction twice
in this case: first to the two input signals and then to the output
calculated with model-based IVA. Since spectral subtraction does
not need to be applied on the output when post-filters are used, the
post-filter approach is more efficient computationally.
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