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ABSTRACT
An accurate estimation of a source activity information is essential
for many speech enhancement algorithms including blind source
separation (BSS). In this paper, we propose a novel BSS method
that accurately models and estimates the source activity in dis-
tributed microphone array (DMA) scenarios. In DMA scenarios,
microphones (or in more general term, microphone-nodes) are often
spatially distributed to a great degree. If there are multiple source
signals in such an environment, the level of each source signal at
each microphone-node varies significantly, thus the source activities
observable at one microphone-node should be significantly differ-
ent from those of other nodes. Therefore, it is essential to assume
node-specificsource activities in DMA scenarios. In the proposed
method, the estimation of the node-specific source activities are done
by integrating node-wise clustering-based BSS processings based
on inter-node acoustic dependencies, i.e., aco-occurrenceof the
source activities among nodes. To model the co-occurrence relation-
ship, we employ Restricted Boltzmann Machine (RBM) in a similar
manner as it is used for collaborative filtering. This paper introduces
a probabilistic formulation of the proposed method, and experimen-
tally demonstrates how essential it is to estimate the node-specific
source activities for distributed microphone array based BSS.

Index Terms— Distributed microphone array, blind source sep-
aration, node-specific source activity, restricted Boltzmann machine.

1. INTRODUCTION

In recent years, portable devices equipped with microphones, such
as PDA, smartphones and laptop computers, have rapidly spread in
our daily life. By making them work collaboratively through sensor
network technologies, we may be able to form a virtual microphone
array that can solve challenging speech processing tasks [1–8]. In
this paper, such microphone array will be referred to as a distributed
microphone array (DMA), and each independent recording device
will be referred to as a microphone-node within the DMA. Although
there are many challenges to be overcome [9], DMA has recently
started attracting a lot of attention as a promising alternative to con-
ventional microphone array. In this paper, we propose a novel blind
source separation (BSS) approach that can be considered as an ex-
tension of conventional clustering-based BSS algorithms [10–13] to
appropriately deal with DMA scenarios.

For last decades, considerable research has been undertaken
to achieve better speech enhancement using a co-located (i.e.,
concentrated at one place) microphone array. For example, they
include studies on beamforming techniques such as the delay-and-
sum beamformer [14], generalized side-lobe canceler (GSC) [15]
and minimum variance distortionless response (MVDR) beam-
former [16], multichannel Wiener filter [16–18], and BSS techniques
such as Independent Component Analysis [19] and clustering-based
BSS algorithms [10–13] like DUET. These studies have shown

that multi-channel speech enhancement algorithms provide supe-
rior performances in adverse environments compared with single-
channel approaches. For example, the clustering-based BSS al-
gorithms [11–13], which we focus on in this paper, are shown to
perform effectively in various BSS scenarios including underdeter-
mined cases [20]. It first calculates a direction-of-arrival (DOA)
type of feature for each time-frequency (TF) bin, and then, with the
sparseness assumptions [10], it clusters these features into clusters
associated with different speakers. Finally, the clustering results
which indicate activity patterns of target speakers (hereafter, source
activities) are directly used to form a TF separation mask for each
target speaker. Although the sparseness assumption may hold just
approximately, meaning that often more than 2 sources may indeed
exist at one TF bin, it achieves very good BSS performance just
by considering that a TF bin belongs to the source with the highest
energy. Since the clustering-based BSS is very effective in vari-
ous environments and its probabilistic formulation provides high
flexibility for extension, one may think it is quite interesting and
attractive to extend it to DMA scenarios.

However, there is a large gap between co-located scenarios and
DMA scenarios in terms of clustering-based BSS, which should be
carefully taken into account. In conventional clustering-based BSS
approaches that use co-located microphones, the source activities are
assumed to be common to all microphones. This assumption is natu-
ral and adequate in co-located microphone scenarios, since all micro-
phones are located close to each other. However, this assumption can
be violated in DMA environments. As the term DMA shows, micro-
phones, or in more general term microphone-nodes are quite often
spatially distributed to a great degree (cf. Fig. 2). If so, the level
of each target signal at each microphone-node varies significantly,
hence the source activities that are observable at a microphone-node
may be significantly different from those of other microphone-nodes.
Although the estimation of thenode-specificsource activities has not
been well studied in past literatures [1–5] yet, some studies in fact
assumes that they are known a priori and proposed the distributed
implementation of multi-channel linear minimum mean square error
(MMSE) filtering [2].

Apparently, one easiest way to estimate the node-specific source
activities is to apply the clustering-based BSS to each node sepa-
rately, i.e., node-wise processing. However, an obvious limitation in
such case is that the node-wise BSS cannot benefit from the other
nodes, thus cannot work effectively by making good use of DMA.

In this paper, we propose to extend the clustering-based BSS al-
gorithm to deal with the DMA scenarios. Specifically, we focus on
the inter-node dependency that, when a source signal is significantly
active at a TF bin of one microphone-node, it tends to be active at the
same TF bin of neighboring nodes. By modeling thisco-occurrence
relationship among nodes using an appropriate probabilistic model,
it estimates the node-specific source activities more accurately than
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the simple node-wise processing. To model the co-occurrence re-
lationship, we employ Restricted Boltzmann Machine (RBM) in a
similar manner as it is used for collaborative filtering [21].

2. NOTATIONS

The followings are the variables we use in this paper. Frequency
indices are omitted from all variables, since all processing will be
performed independently for each frequency bin.

I: Number of nodes
J : Number of clusters in a node
K: Number of sources (In this paper,K = J .)
xi : Observed feature ati-th node
x : Observed feature of all nodes, i.e.,x = [x1, · · · , xI ]

T

ni,j : Source activity ofj-th cluster ati-th node
(ni,j = 1 if the cluster is active, and0 otherwise)

ni : Source activity vector ati-th node
i.e.,ni = [ni,1, · · · , ni,J ]

T

n : Source activity vector of all nodes
i.e.,n = [nT

1 , · · · ,nT
I ]

T

ak : Variable that indicates common latent source activity
a : Vector of the common latent source activity

i.e.,a = [a1, · · · , aK ]T

3. NODE-WISE CLUSTERING-BASED BSS

Let us first review the conventional node-wise clustering-based BSS
which serves as a basis of the proposed method. The following ex-
planation will be given by taking thei-th node case as an example.

As it was partly mentioned in the previous section, thanks to the
property of speech sparseness, the TF components of observed sound
mixtures can be assigned to clusters belonging to different speakers.
In statistical signal processing, this operation can be done by first
defining a hidden variableni,j as an indicator of the dominant sig-
nal in the mixtures, and then determining its posterior probability
p(ni,j |xi) given an observed feature vectorxi. Herej indicates the
cluster/speaker indices.

These posterior probabilitiesp(ni,j |xi) can be obtained by esti-
mating the parameters of the generative model of the observed mix-
ture, which is often denoted in a form of a mixture model as:

p(xi; θ
(ni)) =

J∑
j=1

p(ni,j)p(xi|ni,j ; θ
(ni,j)), (1)

whereθ(ni,j) is a set of parameters to determine a shape of the dis-
tribution, e.g., mean and variance. The feature vectorxi can be an
DOA feature [10], complex normalized observation vector [11, 12],
and p(xi|ni,j ; θ

(ni,j)) can take also various forms such as (com-
plex) Gaussian-like distribution [10,11] and complex Watson distri-
bution [12]. In many cases, the parametersθ(ni) are estimated in the
maximum likelihood sense based on the observed signalxi. After
the parameter estimation, the posterior probabilityp(ni,j |xi) indi-
cates a source activity of thej-th speaker at thei-th node, thus can
be directly used as a separation mask.

4. THE PROPOSED METHOD

Although the node-wise clustering-based BSS solely can estimate
the node-specific source activitiesp(ni,j |xi), it has an obvious lim-
itation that it cannot benefit from the other nodes to estimate the
source activities. In the proposed method, we employ a probabilistic
model that can well capture the relationship among the node-specific

Fig. 1. Generative model for DMA scenario

source activities, i.e.,co-occurrencerelationship, and integrate the
model with the node-wise clustering-based BSS to improve its per-
formance.

4.1. Overview of the proposed model

Figure 1 shows a graphical model of the proposed method. The
bottom 2 layers indicate a node-specific observation model which
basically consists ofI node-wise clustering-based BSS, while the
top 2 layers correspond to the probabilistic model that models the
co-occurrence relationship among node-specific source activities
n1, . . . ,nI . To capture the co-occurrence relationship, we introduce
a hidden variablea, that can be physically interpreted as a variable
that inherently represents the common latent source activities behind
a target acoustic scene. By doing so, we can directly apply RBM
and model joint probabilityp(n,a; θ(w)). Note that RBM is an
appropriate model to capture the co-occurrence relationship as it
can be used for, for example, collaborative filtering [21]. As you
can see from Fig. 1, the observation at each node and node-specific
source activities are now connected to the other nodes via the hidden
variablea, enabling information exchange among nodes.

Note that we employ sparseness assumption at each nodei,
which means that only one component withinni equals to1 and the
others are0. To model this situation, we use Bernoulli-Bernoulli
RBM with softmax visible units, utilized, for example, in [21,22].

4.2. Likelihood function

Overall likelihood function of the proposed method can be formu-
lated as:

L(θ) =
∑
a

∑
n

p(x,n,a; θ), (2)

=
∑
a

∑
n

p(n,a; θ(w))p(x|n; θ(n)),

=
∑
a

∑
n

p(n,a; θ(a))
∏
i

p(xi|ni,j ; θ
(ni)), (3)

whereθ = {θ(w), θ(n)}. θ(w) indicates the parameters of the model
that represents the co-occurrence of source activities among nodes,
while θ(n) is the parameters of the node-wise clustering-based BSS.
Hereafter,p(n,a; θ(w)) will be referred to as source activity model.

By comparing eq. (3) with eq. (1), we can intuitively understand
how the proposed method can be seen as an extension of the con-
ventional clustering-based BSS. The term corresponding to the prior
distribution of the speaker activity in eq. (1) (i.e.,p(ni,j)) is now
replaced withp(n,a; θ(w)) in eq. (3) to take the co-occurrence re-
lationship among the node-specific source activitiesn1, . . . ,nI into
account.
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4.3. Source activity model

The source activity modelp(n,a; θ(w)) is formulated by using RBM
denoted as follows.

p(n,a; θ(w)) =
1

Z
exp(−E(n,a)),

where

E(n,a) =−
I∑

i=1

(
J∑

j=1

bi,jni,j +

J∑
j=1

K∑
k=1

ni,jwi,j,kak

)

−
K∑

k=1

ckak,

=−
I∑

i=1

(
bT
i ni + nT

i Wia
)
− cTa,

whereθ(w) = {Wi,bi, c} andZ is a normalization term.
Conditional probabilities between the visible unitn and the hid-

den unita can be represented as follows.

p(ak = 1|n) = σ(ck +

I∑
i=1

J∑
j=1

ni,jwi,j,k), (4)

p(ni,j = 1|a) =
exp(bi,j +

∑
k wi,j,kak)∑

j′ exp(bi,j′ +
∑

k wi,j′,kak)
, (5)

whereσ(·) corresponds to the sigmoid funcitonσ(x) = 1/(1 +
exp(−x)). Equation (5) is different from the standard RBM, be-
cause of the sparseness assumption we made [21,22].

One important modification that we have to make to the stan-
dard RBM is the following additional conditional probability. While
it is possible for the standard RBM to directly observe features for
the visible unit, the proposed method observes the features via the
node-wise clustering-based BSS (cf. Fig. 1). It means that the vis-
ible unit has to be treated a latent variable that cannot be directly
observable. Thus, the input feature to the visible unit has to be deter-
mined/sampled by considering contributions from both the bottom
layer (i.e., node-wise clustering-based BSS) and the top layer (i.e.,
p(ni,j = 1|a)). Finally, we have an additional conditional probabil-
ity denoted as:

p(ni,j = 1|a,x) = p(xi|ni,j = 1)p(ni,j = 1|a)∑J
j′=1 p(xi|ni,j′ = 1)p(ni,j′ = 1|a)

. (6)

Now let us describe how the parameters of the source activity
model are estimated. As in the standard RBM, we estimate the pa-
rametersθ(w) by gradient decent using contrastive divergence [23,
24]. The gradient of each parameter can be written as follows.

∂LR(θ)

∂wi,j,k
=

1

T

∑
t

n̂t,i,jσ(ck +
∑
i′

∑
j′

n̂t,i′,j′wi′,j′,k)

− 1

T

∑
t

ñt,i,jσ(ck +
∑
i′

∑
j′

ñt,i′,j′wi′,j′,k),

∂LR(θ)

∂bi,j
=

1

T

∑
t

n̂t,i,j −
1

T

∑
t

ñt,i,j ,

∂LR(θ)

∂ck
=

1

T

∑
t

σ(ck +
∑
i′,j′

n̂t,i′,j′wi′,j′,k)

− 1

T

∑
t

σ(ck +
∑
i′,j′

ñt,i′,j′wi′,j′,k),

whereLR(θ) simply indicates log of the likelihood function intro-
duced in eq. (2), andt is the time frame index. In the standard RBM
training,n̂t,i,j corresponds directly to the input visible features, and
ñt,i,j to the reconstructed input feature through RBM.

In the proposed method, while the way of calculatingñt,i,j re-
mains exactly the same as in the standard RBM,n̂t,i,j has to be
sampled by Gibbs sampling, since it is a latent variable that is not di-
rectly observable. The following is the procedure to calculate these
2 variables.

• Estimation ofn̂t,i,j

0. Estimatep(ni,j = 1|xj) by using a conventional
clustering-based BSS.

1. Sample an initial value of̂nt,i,j based onp(ni,j =
1|xj).

2. Iterate the following operationm times (m = 1 in this
paper)

2-(a). Samplêat,k usingp(ak = 1|n; θ(w)) and current
n̂t,i,j .

2-(b). Sample neŵnt,i,j usingp(ni,j = 1|a,x; θ(w)),
ât,k andxt.

3. Usen̂t,i,j obtained at 2-(b) for the gradient calculation.

• Estimation ofñt,i,j

1. Sample an initial value of̃nt,i,j usingp(ni,j = 1|xt,j)

2. Iterate the following operationm times (m = 1 in this
paper)

2-(a). Samplẽat,k usingp(ak = 1|n; θ(w)) and current
ñt,i,j

2-(b). Sample new̃nt,i,j usingp(ni,j = 1|a; θ(w)) and
ãt,k obtained at the previous step

3. Useñt,i,j obtained at 2-(b) for the gradient calculation

4.4. Overall parameter estimation procedure

The following summarizes the parameter estimation procedure of the
proposed method.

0. (Initializaton): Estimatep(ni,j = 1|xj) using a conventional
clustering-based BSS.

1. Iterate the following steps until convergence

1-(a). Calculate∂LR(θ)/∂wi,j,k, ∂LR(θ)/∂bi,j , ∂LR(θ)/∂ck
as in the section 4.3.

1-(b). Updatewi,j,k, bi,j , ck as follows.

wi,j,k← wi,j,k + µ
∂LR(θ)

∂wi,j,k

bi,j ← bi,j + µ
∂LR(θ)

∂bi,j

ck← ck + µ
∂LR(θ)

∂ck

2. Usep(ni,j = 1|ât,xt) as soft masks to obtain enhanced sig-
nals

Optionally, we can also iteratively update the parametersθ(n) by
solving ∂LR(θ)/∂θ

(ni) = 0 after the step 1-(b), but this part is
omitted from this paper because of space limitations.

466



Fig. 2. Experimental condition

5. EXPERIMENT

In this section, we evaluate the effectiveness of the proposed method
in comparison with conventional methods.

5.1. Acoustic conditions
To evaluate the proposed method, we simulated a DMA environ-
ment depicted in Fig. 2 by using the image method [25]. This sce-
nario simulates a situation where 2 groups, each of which involves
3 people, are having conversations at the coffee tables (i.e.,J = 6
andK = 6 ). On top of each coffee table, there is a co-located 3-
element microphone array that should be regarded as a microphone
node (i.e.,I = 2) within this DMA scenario. The size of the sim-
ulated room was 10 m (W)×5 m (D)×5 m (H), and 2 microphone
nodes are separated by 5 m.

We simulated 4 reverberant conditions with reverberation time
(T60) of 0.2, 0.4, 0.6 and 0.8 seconds, respectively. White noise are
added to each microphone with SNR of 10 dB.

5.2. Tasks and other conditions
Our objective is to separate 6 simultaneous speakers. For com-
parison with the proposed method, we employed a state-of-the-art
clustering-based BSS algorithm [11], and performed BSS using all
6 microphones to obtain the source activities common to all nodes.
It will be referred to as “global clustering”. We also applied the
same method separately to each node to obtain the node-specific
source activities. This method will be referred to as “node-wise
clustering”. The node-wise clustering was performed with 2 differ-
ent initialization schemes. The first scheme is to simply initialize
all the parameters randomly. The second scheme is to first perform
the global clustering and then use obtained posteriorp(nj |x) as an
initial value of the corresponding posterior of the node-wise clus-
tering, and run expectation-maximization iteration of the node-wise
clustering several times (3 times in this paper). These 2 types of
node-wise clustering results were respectively used for initialization
of the proposed method. In total, we have 5 different BSS schemes
to be compared. For all the 5 methods described above, the separated
signals are generated by applying soft masks to the signals observed
at the closest microphone-node to each speaker. In this experiment,
we assumed that the co-occurrence patterns of the source activities
are frequency independent, thus one common latent source activ-
ity model were estimated for all the frequency bins. The step size
parameterµ was set to0.01. The sampling frequency was 8 kHz.

The results are evaluated based on the Signal-to-Interference Ra-
tio (SIR) [26]. Twenty random combinations of speech utterances of
different speakers from the TIMIT database [27] are used. The re-
sults shown below are obtained by averaging over all combinations.

Fig. 3. Experimental result

5.3. Results

Figure 3 shows SIRs of the processed signals and unprocessed sig-
nal . The first thing we can notice is that all methods achieved higher
SIRs than the unprocessed signal. Now, let us compare 3 solid lines.
By comparing the performance of “(3) node-wise clustering (w/ ini-
tialization using global clustering)” with that of the “(2) global clus-
tering”, we can see better or at least comparable performances. This
result partly shows the advantage of assuming node-specific source
activities. If we take a look at the performance of the “(4) proposed
method (w/ initialization using (3))”, we can confirm the benefit of
incorporating co-occurrence relationship among nodes. This bene-
fit can also be confirmed by comparing two dashed lines obtained
with random initialization. In both cases, the proposed method suc-
cessfully outperformed the node-wise clustering, and showed the po-
tential importance of modeling the co-occurrence relationship under
DMA environments.

6. CONCLUSION

This paper proposed an extension of the clustering-based BSS algo-
rithm to deal with DMA scenarios. In DMA scenarios with multiple
source signals, the level of each source signal at each microphone-
node tends to vary significantly, thus accordingly source activity
observable at each microphone-node differs from node to node.
To model this situation, we proposed a method to estimate node-
specific source activities by integrating node-wise clustering-based
BSS in a probabilistic manner based on a co-occurrence of the activ-
ities among nodes. The co-occurrence relationship was modeled by
RBM as it was used for collaborative filtering. Experimental results
showed the advantage of the proposed method over the conventional
node-wise clustering and global-clustering in adverse environments,
and demonstrated the potential importance of modeling the co-
occurrence relationship to improve BSS performance under DMA
scenarios.
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