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ABSTRACT

In this paper we present a source counting algorithm to determine

the number of speakers in a speech mixture. In our proposed method,

we model the histogram of estimated directions of arrival with a non-

parametric Bayesian infinite Gaussian mixture model. As an alterna-

tive to classical model selection criteria and to avoid specifying the

maximum number of mixture components in advance, a Dirichlet

process prior is employed over the mixture components. This allows

to automatically determine the optimal number of mixture compo-

nents that most probably model the observations. We demonstrate

by experiments that this model outperforms a parametric approach

using a finite Gaussian mixture model with a Dirichlet distribution

prior over the mixture weights.

Index Terms— Source counting, Blind source separation, non-

parametric Bayesian methods, Chinese restaurant process

1. INTRODUCTION

Multichannel blind source separation (BSS) algorithms are used to

extract source signals, observing only a mixture of them at multiple

microphones. BSS algorithms in general consider the source loca-

tions, transfer functions and source signals to be unknown. On the

other hand, knowledge of the number of active sources is often as-

sumed. In a practical application, however, the number of sources is

usually unknown and has to be estimated.

Several algorithms have been proposed to estimate the number

of sources. Model selection algorithms, that compare models of

different order with respect to criteria such as penalized likelihood

or Bayesian information [1], are usually computationally expensive.

An alternative are finite mixture models, where the number of com-

ponent densities is determined in the course of the mixture parame-

ter estimation. In [2] a variational Expectation Maximization (EM)

algorithm for complex Gaussian mixture models is employed. Start-

ing from an assumed maximum number of sources the variational

EM iterates until only a few mixture weights remain significantly

larger than zero. Their number constitutes then the estimate of ac-

tive speakers. While this approach modeled the distribution of the

microphone signals in the short-time Fourier transform (STFT) do-

main, the distribution of the directions of arrival (DoA), which are

computed from the microphone signals, is modeled in [3]. They

employed a real-valued Gaussian mixture model (GMM) and pro-

posed to impose a Dirichlet distribution as a prior on the mixture

weights. The Dirichlet distribution prior is parametrized such, that

only dominant mixture components retain a high mixture weight in

the course of the iterations. The number of speakers is then deter-

mined based on a weight threshold. In [4] the phase, frequency and
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amplitude normalized vector of microphone signals was modeled by

a complex Watson mixture model. A variational EM algorithm was

derived, and the number of active speakers was determined by a step-

wise source counting algorithm: after identifying a source, its con-

tribution to the microphone signal is eliminated before searching for

the next source. This process is repeated until a maximum number

of potential sources is reached. The final source number estimate

was then determined by a threshold on the mixture weights and the

concentration parameters of the complex Watson distributions.

All these aforementioned approaches have in common that the

maximum number of sources has to be specified in advance. In this

contribution we propose an approach, which avoids exactly this. In-

stead of using a parametric model in terms of the number of mix-

ture components of a mixture model, we employ a Dirichlet process

(DP) prior over the mixture components. The resulting model is also

known as an infinite mixture model [5], which allows the number of

mixture components to adapt to the observations and be potentially

infinite. While this approach can be used for any kind of represen-

tations of the microphone signals, we employ here DoA estimates

computed from the multichannel microphone input. The DoAs are

modeled by a mixture of wrapped Gaussians as in [3]. We propose

to use the Chinese restaurant process (CRP) representation of the

Dirichlet process, where the mixture components of the GMM and

its weights are assigned by the CRP. The parameters of the Gaus-

sians of each mixture component, namely the means and variances,

are assumed to be drawn from a normal-gamma distribution. Em-

ploying the predictive posterior distribution, this effectively results

in a mixture of Student’s t-distributions, where the number of mix-

ture components is learned automatically. In [6] an infinite Gaussian

mixture model (IGMM) is used to estimate models for nonstationary

noise. We extend the approach of [6] by the wrapped phase Gaus-

sian model of [3]. Moreover we modify the CRP formulation to al-

low weighted counts for customers instead of a fixed count of one per

customer. This allows to place more emphasis on observations which

are presumably less corrupted by noise. A selection or weighting of

observations for source counting has also been proposed in [3, 7, 8].

The paper is organized as follows: In section 2 we describe the

signal model, followed by a description of the generative process of

the IGMM in section 3. Section 4 gives an overview over the param-

eter estimation procedure while section 5 describes the application

to source counting. Experimental results are reported in section 6

and conclusions are drawn in section 7.

2. SIGNAL MODEL

Consider a convolutive mixture model of K independent source sig-

nals Sk(τ, f) captured byDmicrophones yielding the sensor signals
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Xd(τ, f) in the STFT domain [9]:

X(τ, f) =

K∑

k=1

Hk(f)Sk(τ, f) +N(τ, f), (1)

where X = (X1, . . . , XD)T is the vector of sensor signals,

Hk = (H1,k, . . . ,HD,k)
T is the vector of multiplicative trans-

fer functions associated to source k, and N = (N1, . . . , ND)T

is the noise vector, with time frames τ from 1 to T and fre-

quency bins f from 1 to F . A time difference of arrival (TDoA)

vector q(τ, f) = (. . . , qij′ , . . . )
T for all microphone pairs j-

j′ is calculated as qij′(τ, f) = 1
2πfreal

arg
(
Xj(τ, f)X

∗
j′ (τ, f)

)
,

with freal = f

M
fs, where F = M/2 − 1. With the matrix

D = [. . . ,pj − pj′ , . . . ]
T

of differences of two-dimensional po-

sition vectors pj of all microphone pairs and the sound velocity v,

employing the Moore-Penrose pdeudo-inverse, denoted by +, we

can estimate the DoAs ψ(τ, f):
[
cosψ(τ, f)
sinψ(τ, f)

]

= vD+
q(τ, f). (2)

We stack all DoAs ψ(τ, f) in a vector d = [dn], with the n-th DoA

observation dn := ψ(τ, f)∀τ, f ∧ n = (τ − 1)F + f and n ∈
1, . . . , T · F . This allows us to consider all DoAs together.

3. INFINITE GAUSSIAN MIXTURE MODEL

The input to our algorithm are the DoA measurements as described

in the last section. Since the range of the DoAs is [−π, π), for obser-

vations close to −π and π, the observed distribution would become

bimodal. To overcome this effect, all possible shifts of an observa-

tion by 2π have to be accounted for [3].

Let kn be the shift of the n-th DoA observation. A mixture

component and shift conditional distribution, where µl is the mean

and σ2
l the variance of the l-th Gaussian component, is then given

by:

p
(
dn|µl, σ

2
l , kn

)
=

1
√

2πσ2
l

exp

(
−(dn + 2πkn − µl)

2

2σ2
l

)

. (3)

Each component of the mixture distribution is assumed to model

one of the sources, with its mean being the direction of the source.

Let zn = l be an indicator variable, indicating that the n-th ob-

servation belongs to the l-th mixture component, P (zn = l) the

weight of the mixture component and L the total number of mix-

ture components. For a finite mixture of wrapped Gaussians we

sum over the weighted mixture components and the shifts, assum-

ing that each shift has the same probability. Denoting the set of

all means as µ = {µ1, . . . , µL} and the set of all variances as

σ = {σ1, . . . , σL}, we get:

p
(
dn|µ,σ

2) =
L∑

l=1

P (zn = l)
∞∑

kn=−∞

p
(
dn|µl, σ

2
l , kn

)
. (4)

The generative process of the IGMM, using the CRP-based rep-

resentation, is now assumed as follows: First, for all mixture com-

ponents l ∈ {1, . . . ,∞} the parameters Θl = {µl, σ
2
l } are sampled

from the same normal-gamma distribution with mean m(0), concen-

tration ξ(0), shape η(0) and scale r(0):

Θl = {µl, σ
2
l } ∼ N

(

µ;m(0), σ2/ξ(0)
)

G
(

σ−2; η(0), r(0)
)

(5)

Next, a CRP is used to generate the indicator variables zn. A CRP is

a sequential process where each zn is generated, considering the pre-

vious z1, . . . , zn−1 indicators. Let nl be the number of observations

assigned to the l-th mixture component and N the total number of

observations generated so far. For a new observation dN+1, an ex-

isting mixture component l with nl > 0 is chosen with probability

P (zN+1 = l|z1, . . . , zN) = nl/(N + γ). (6)

Alternatively, a new mixture component is created with probability

P (zN+1 = lnew|z1, . . . , zN ) = γ/(N + γ), (7)

where γ is the concentration parameter of the Dirichlet process.

If a new mixture component is created, a Θl with nl = 0 is

assigned to the observation. The process starts with generating the

first observation and therefore the first mixture component. For ev-

ery subsequent observation either an existing mixture component is

chosen or a new one is created. Since only a finite number of ob-

servations is generated, the number of created mixture components

will also be finite and upper bounded by the number of observations.

Next, a shift kn is sampled for each observation. For simplicity we

limit the shifts to be between −K and K and assume equal prior

probability for the possible shifts. Finally the observations dn are

generated using the distribution (3).

4. PARAMETER ESTIMATION

The problem of learning is now to determine the number of mixture

components and their parameters Θl. For the parameter estimation

we use a hybrid approach consisting of Gibbs sampling and maxi-

mum a posteriori (MAP) estimation.

4.1. Parameter Update

First, the assignment of an observation to a mixture component is

sampled using Gibbs sampling. The CRP has the property that its

random variables are interchangeable, which means that the order

of the variables does not matter when calculating the probability for

a certain variable. Using this property it is easy to devise a Gibbs

sampler. In Gibbs sampling the value of one variable is resampled

given the values of all other random variables. Therefore, to resam-

ple a certain indicator variable, we need the posterior probability

of zn = l, given all observations and the set of hyper parameters

Θ(0) = {m(0), ξ(0), η(0), r(0)} of the prior distribution. We denote

z\n as the set of indicator variables without the n-th one, since we

want to resample the n-th one. The set of all observations without

the current one is denoted by d\n. The set of all shifts without the

current one is k\n. The posterior probability of zn = l can then be

calculated as follows:

P (zn = l|dn,d\n, z\n,k\n,Θ
(0)) ∝

P (zn = l|z\n)p(dn|d\n, zn = l, z\n,k\n,Θ
(0)). (8)

For the mixture component weights P (zn = l|z\n) we use equa-

tions (6) and (7). For the second term we use the predictive prob-

ability for an observation dn belonging to the l-th class. We have

to integrate out the mixture component parameters Θl and sum over

the shifts kn in equation (3):

p(dn|d\n, zn = l, z\n,k\n,Θ
(0)) ∝

K∑

kn=−K

∫

p(dn|Θl, kn)p(Θl|d\n, zn = l, z\n,k\n,Θ
(0))dΘl

(9)

∝
K∑

kn=−K

T (dn + 2πkn;ml, ξl, ηl, rl). (10)
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Integrating out the parameter Θl, using the posterior distribution of

the parameter, delivers the predictive posterior distribution, which is

a Student’s t-distribution:

T (x;m, ξ, η, r) =
(

ξ

2πr(ξ + 1)

) 1

2 Γ(η + 1
2
)

Γ(η)

(

1 +
ξ(x−m)2

2r(ξ + 1)

)−(η+ 1

2
)

. (11)

Summing over kn, assuming a uniform prior and limiting the pos-

sible shifts between −K and K, results in a wrapped Student’s

t-distributions according to (10). In case of nl > 0, which is a

mixture component with observations assigned to it, the parameters

ml, ξl, ηl, rl of the predictive posterior distribution are used. For the

case zn = lnew, the prior parameters Θ(0) are used instead.

Next, we have to estimate the shift kn for the observation dn.

To do this we employ the posterior probability of the shift kn given

all other variables. We then decide for the shift, that maximizes the

posterior probability. To obtain the posterior we again integrated out

Θl in equation (3). Assuming a uniform prior probability for the

shifts kn, the posterior is also a Student’s-t distribution:

P (kn|dn,d\n, zn = l, z\n,k\n,Θ
(0)) ∝

T (dn + 2πkn;ml, ξl, ηl, rl). (12)

Having the class assignments zn and shifts kn we can update the

parameters ml, ξl, ηl and rl of the predictive posterior distribution.

ξl = ξ(0) + s0,l, (13)

ml = (ξ(0)m(0) + s1,l)/ξl, (14)

ηl = η(0) + s0,l/2, (15)

rl = r(0) +
(

s2,l + ξ(0)(m(0))2 − ξlµ
2
l

)

/2, (16)

where the parameters are updated employing the sufficient statistics

s0,l, s1,l and s2,l of each mixture component:

s0,l = nl, (17)

s1,l =
∑

n:zn=l

(dn − 2πkn), (18)

s2,l =
N∑

n:zn=l

(dn − 2πkn)
2. (19)

Summarizing all steps, the parameters are estimated by iterating

over the observations in a random order. First, an observation is re-

moved from the sufficient statistics of its mixture component, then

the indicator variable zn is resampled, the shift kn estimated and

finally the observation added back to the sufficient statistics of the

chosen mixture component. The parameters of the predictive pos-

terior distributions are updated after every change of the sufficient

statistics. This is repeated for several iterations. The parameter set

after the final iteration is then used for the source counting.

The algorithm starts with no observations assigned to a mixture

component and no mixture components created. Observations are

assigned to chosen or created mixture components in the first itera-

tion and then added to the corresponding sufficient statistics.

4.2. Parameter Update with Weighted Observations

We want to emphasize the observations of active speakers with high

power by power weighting. The rationale behind this is that observa-

tions with high power are probably little affected by noise and thus

the DoA estimates obtained from them are supposedly more reliable

than those obtained from samples with low power.

Therefore we introduce a weight an corresponding to the power

of the n-th observation, similar to [3]:

an = c|X1,n|
2/

T ·F∑

ñ=1

|X1,ñ|
2. (20)

Where the summation is over all frequency bins and time frames.

The constant c is a scaling factor, which is set to c = 1000, andX1,n

is the signal at the first microphone. Another beneficial effect of the

above weighting of the DoAs is that the histogram of the weighted

DoAs is more Gaussian like than of the unweighted DoAs.

The calculation of the sufficient statistics is modified to include

the power weighting. The sufficient statistics are iteratively updated

by subtraction before each Gibbs sampling step and addition after-

wards:

s0,l=zn ← s0,l=zn ± an, (21)

s1,l=zn ← s1,l=zn ± an(dn − 2πkn) (22)

s2,l=zn ← s2,l=zn ± an(dn − 2πkn)
2

(23)

All sufficient statistics of the mixture components with no observa-

tions assigned are initialized to zero.

Note, that with the introduction of power weights, we also

change the CRP to a weighted CRP. Instead of counting an observa-

tion with a weight of one, we count it with its corresponding weight.

Using the sufficient statistics s0,l, the equations (6) and (7) become

P (zn = l|z\n) ∝ s0,l and P (zn = lnew|z\n) ∝ γ. (24)

Before the first iteration we initialize the hyper parameters of

the prior distribution. Due to the power weighting, observations can

have a small weight. We therefore set the concentration parameter

ξ(0) and the shape parameter η(0) to small values to obtain prior

weights in the same scale of the observation weights:

ξ0 = 5× 10−3, η0 = 5× 10−3, (25)

m(0) =
1

c

T ·F∑

n=1

andn, (26)

r(0) = η0

(

1

c

T ·F∑

n=1

an
(

dn −m
(0)
)2
)

. (27)

5. SOURCE COUNTING

To obtain the final number of sources we apply further steps in the

estimation procedure.

As a first step we reduce the value of Dirichlet process concen-

tration parameter γ by a factor of 100 after a burn-in period. This

leads to the removal of mixture components with low weights and

reduces the amount of newly created mixture components. Experi-

ments showed, that the length of the burn-in period should be chosen

long enough for an initialization, and the factor of the reduction high

enough to reduce the number of newly created classes per iteration.

We did not observe changes in performance with higher reductions.

After finishing the iterations, mixture components with a mean

close to the mean of mixture components with higher weights are

removed by only keeping those mixture components whose means

have the highest probability under their own distribution.

Finally, mixture components mainly modeling the noise floor,

with a variance σ2
l = rl/ηl higher than 10 times the minimal vari-

ance of all mixture components, are removed. In the experimental

results we show that the performance of speaker counting algorithm

is rather insensitive to the exact value of this factor and that it can be

chosen independently of the SNR and the minimal speaker spacing.
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The remaining mixture components then model the distribution

of the individual DoAs of the speakers. The number of mixture com-

ponents is the estimate for the number of speakers.

6. EXPERIMENTAL RESULTS

In a simulation environment, up to six speech sources are placed on

a circle of radius 1m around an array of D = 3 omnidirectional

microphones arranged in a triangular shape with 2 cm edge length.

The number of possible source positions is varied from four to up to

eight with an equal spacing of 90◦, 60◦ and 45◦. The sources and

the sensor array share the same height of 1.5m.

Speech samples of 5 s length and sampling frequency fs=16 kHz

are chosen at random from the training utterances of the TIMIT

database [10]. Speech samples of zero to up to six speakers without

speech pauses are convolved with impulse responses of a simulated

non-reverberant room of dimension 4m× 4m× 3m and mixed.

An STFT with frame sizeM = 1024 and a frame shift of 256 is

applied to each sensor signal. The SNR for white Gaussian noise is

varied from 10 dB to 30 dB.

For the Gibbs sampling algorithm about 6% of the observa-

tions with highest power are chosen for the parameter estimation.

The concentration parameter of the Dirichlet process prior is set to

γ = 100 for the first 75 burn in iterations and then reduced to γ = 1
for the remaining 225 iterations, where no change in performance

was observed with more iterations. Our unoptimized C++ imple-

mentation took about 15 s per recording on a Core i7 960.

Figure 1 shows the results of 100 trials for our Dirichlet pro-

cess prior-based algorithm and, for comparison, an algorithm with

Dirichlet distribution prior. The parameters and initial values for

the Dirichlet distribution prior-based counting algorithm are taken

directly from the corresponding publication [3]. As a performance

measure we used the accuracy, i.e., the percentage of times the num-

ber of sources is correctly estimated. It can be seen that our algo-

rithm delivers a better performance. For example, for a minimum

speaker spacing of 90◦ the proposed algorithm almost always counts

the number of active speakers correctly for all three SNR values,

while the method with the Dirichlet distribution prior does so only if

the number of active speakers is small and the SNR is high. Further-

more, the results are comparable to a state of the art algorithm using

complex Watson mixture models that we published in [8].
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Fig. 1. Speaker counting accuracy in % with Dirichlet distribution

prior and Dirichlet process prior over different number of active

speakers with different minimal speaker spacings (Top to bottom:

up to 4 speakers - 90◦, up to 6 speakers - 60◦, up to 6 speakers - 45◦,

different input SNRs (10 dB, 20 dB, 30 dB) and different number of

active speakers (left to right or blue to red: 0, 1, 2, 3, 4, 5, 6).

We observed, that the variances of the estimated mixture com-

ponents increase with decreasing SNR. On the other hand, mixture

components corresponding to valid speakers always had the lowest

variances among the mixture components. Therefore we decided to

use an adaptive thresholding value on the mixture component vari-

ances to discard mixture components with high variance. The thresh-

olding value is automatically determined from the data by finding

the minimal variance in all mixture components and discarding all

mixture components that have a 10 times higher variance. Figure 2

shows the sensitivity of our algorithm against this scaling factor. It

can be seen that the scaling factor is independent of the SNR and

speaker spacing. The best results are achieved for a scaling factor

between 5 and 15, with the optimum around 10, the value that has

been chosen for the results presented in Fig. 1.
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at different SNRs and minimal speaker spacings

It is important to note that we present results for an anechoic

environment only. In the presence of reverberation the frequency

normalization described in Section 2, which assumes a linear de-

pendency of the phase on the frequency, and the small microphone

spacing of 2 cm are unfavorable. We employed this normalization to

allow for a fair comparison with the algorithms of [3] and [8]. For

the presented algorithm, the normalization is in principle not neces-

sary and could be eliminated, however at the expense of introducing

a permutation problem, for which, however, solutions are given in

the literature.

7. CONCLUSIONS AND OUTLOOK

We have presented a source counting algorithm based on the

Bayesian estimation of an infinite Gaussian mixture model. Un-

like earlier approaches to source counting based on estimating the

number of components of a mixture model, the maximum number of

active sources does not need to be specified in advance. The experi-

mental results show that the proposed Dirichlet process prior-based

algorithm outperforms a comparable algorithm using a Dirichlet

distribution prior. A dynamic thresholding based on a variance floor

learned from the data was proposed to reduce the dependency of the

flooring parameter on the SNR.

Based on these results we believe that the nonparametric mod-

eling in terms of mixture components can help to increase the per-

formance over parametric models with a fixed number of mixture

components. Since the CRP formulation for infinite mixture models

can be applied to almost any kind of mixture models, it can also be

applied to a complex Watson mixture model (cWMM). Recently we

have shown [4, 8] that a cWMM is an appropriate model of the ob-

servation vector computed from the microphone signals and can be

used to derive source counting, beamforming and source separation

algorithms. An exension of the parametric cWMM to a nonparamet-

ric infinite cWMM is therefore a promising topic for future research.
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