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ABSTRACT

Localization of audio sources is an important research problem, e.g.,
to facilitate noise reduction. In the recent years, the problem has
been tackled using distributed microphone arrays (DMA). A com-
mon approach is to apply direction-of-arrival (DOA) estimation on
each array (denoted as nodes), and then map the DOA estimates to
a location. In practice, however, the individual nodes contain few
microphones, limiting the DOA estimation accuracy and, thereby,
also the localization performance. We investigate a new approach,
where range estimates are also obtained and utilized from each node,
e.g., using time-of-flight cameras. Moreover, we propose an optimal
method for weighting such DOA and range information for audio
localization. Our experiments on both synthetic and real data show
that there is a clear, potential advantage of using the joint audio-
visual localization framework.

Index Terms— Localization, DOA, range, optimal weighting,
distributed microphone arrays, time-of-flight camera.

1. INTRODUCTION

In the current “age of big data”, the number of sensors such as micro-
phones and cameras is rapidly increasing in our electronic devices.
This increase in sensor quantities and thereby amounts of available
data facilitates new applications that were previously unfeasible, and
ease certain signal processing tasks [1]. Several examples of this can
be found within the domain of microphone array processing [2–4].
Localization of audio sources (e.g, as input to beamforming, sep-
aration, and steering methods) using microphone arrays is a well-
established example for the case where we have a single microphone
array. However, in the recent years, more focus have been on local-
ization using several of such arrays, forming a so-called (wireless)
sensor network [5]. These arrays can then be distributed at different
locations, increasing the probability of having an array with good
noise conditions, ultimately increasing the potential localization per-
formance.

In theory, such distributed arrays can, of course, be considered
as one big array. However, since these arrays typically belong to
different devices (e.g., different smart phones [6]), and to reduce the
amount of data to transmitted between devices, the arrays are consid-
ered as individual sensor nodes. A popular approach to localization
using acoustic sensor networks is therefore to let each node in the
network estimate a direction-of-arrival (DOA) between the node it-
self and the audio source. Then, each of these DOA estimates are
transmitted to a central node and combined into a single location
estimate. This approach were considered in, e.g., [7] were a least
squares (LS) estimate of the location is found from the DOA esti-
mates from each sensor node. Clearly, this approach is suboptimal
if the noise conditions are different across the sensors nodes. This
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problem has since been tackled in [4, 8], by considering different
methods for detecting and removing outliers among the DOA es-
timates. Moreover, methods have been proposed that use spectral,
biologically inspired features together with DOA estimates to con-
duct the localization in probabilistic frameworks [9]. One general
limitation of the angle-based approach to localization, and, thereby,
all of the aforementioned methods, is that they rely only on angle es-
timates from each node, since range (distance from source to node)
estimates are difficult to obtain using closely spaced microphones
only [10].

In this paper, we therefore consider a novel approach to audio
localization, relying on both angle and range information. As in
the traditional approach, the angle information is obtained using the
microphone recordings, whereas the range information is obtained
using time-of-flight (TOF) cameras. Such cameras, as well as mi-
crophones, are found in consumer (e.g., Microsoft Kinect), and in-
dustrial grade (e.g., SoftKinetic DS325) products, which facilitate
this approach in practice. Compared to when using small micro-
phone arrays only, range information can be extracted with a much
higher accuracy using TOF cameras. For example, the SoftKinetic
DS311 camera has a range accuracy below 3 cm at 3 meters [11].
Using this approach, we propose a localization method, where the
individual location (i.e., angle and range) estimates from each of the
nodes are weighted according to their (estimated) noise variances.
Finally, we give an example of how to find the optimal weights in
practice. We note that the proposed method as well as the tradi-
tional, angle-based methods require the node and sensor positions to
be known. Methods for estimating these positions have been pro-
posed recently [6, 12, 13], however, if this information is unknown
in practice. Moreover, we note that joint audio-visual localization
is not a new idea [14–20], but existing approaches typically utilize
regular digital cameras to get additional angular source information
and not range information as considered herein.

The remainder of the paper is organized in the following way:
in Section 2, we introduce the localization problem, and present a
typical least squares method for localization using angles only. Then,
we propose the optimal weighting method for localization using both
angles and ranges in Section 3. The weights for the localization
methods can, e.g., be estimated as proposed in Section 3.1. Finally,
experimental results and conclusions are presented in Section 4 and
5, respectively.

2. DOA-BASED LOCALIZATION

We consider a setup containingK acoustic nodes in some enclosure.
Each acoustic node consists of multiple microphones forming a mi-
crophone array. Given an angle, θk, and a range, ck, between node
k and the source, the source position can be written as

s = mk + ckbk, (1)
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where mk is the position of node k, and bk = [cos θk sin θk]
T .

Note that we consider localization in two dimensions which is suffi-
cient as a proof of our concept, but the results can be generalized to
three dimensions. In practice, estimates of the angles (and possibly
also the ranges) is obtained, e.g., using a microphone array in each
node. The task is then to estimate the acoustic source location, us-
ing these estimates. If we only have angle estimates, we replace the
DOA in node k by an estimate θ̂k, such that b̂k = [cos θ̂k sin θ̂k]

T .
Then, we can, e.g., introduce an error function JMSE being the mean
squared error (MSE) between the true source position and its esti-
mates ŝk [7]:

JMSE =
1

K

K∑
k=1

‖s− ŝk‖2 (2)

=
1

K

K∑
k=1

(s−mk + ckb̂k)
T (s−mk + ckb̂k). (3)

Differentiating with respect to the unknown ranges, ck, setting to
zero, and solving for the ranges yields

ĉk = (s−mk)
T b̂k, for k = 1, . . . ,K. (4)

Doing the same with respect to the unknown source position yields

ŝ = K−1
K∑
k=1

mk + ckb̂k. (5)

Inserting the range estimate in (4) in the above expression, and solv-
ing for the unknown source position then finally yields

ŝ =

(
K∑
k=1

I2 − b̂kb̂
T
k

K

)−1 K∑
k=1

I2 − b̂kb̂
T
k

K
mk, (6)

where IN ∈ RN×N is the identity matrix.

3. EXPLOITING RANGE INFORMATION

If we also have estimates, ĉk, of the ranges, ck, we explicitly have
K estimates of the audio source location, each given by

ŝk = mk + ĉkb̂k. (7)

This range information could be estimated from the audio data [21],
or, possibly with even higher accuracy, from visual data obtained
using a TOF camera.

When the latter is the case, the main task in source localization
is to weigh these K location estimates appropriately (e.g., accord-
ing to the EXIP principle [22]). One approach, which is considered
here, is to formulate a linear model for the observations for which
the minimum variance (MVU) estimator of the unknown location is
well-known. The observed data is the individual location estimates
in this case. A linear model is readily obtained by stacking the loca-
tion estimates, i.e.,

ŝ =
[
ŝT1 · · · ŝTK

]T
= Hs+ e, (8)

where H ∈ R2K×2 is defined as H = [I2 · · · I2]T , e = [eT1 · · · eTK ]T ,
and ek = s − ŝk is the error associated with the k’th location es-
timate. Let us assume that the localization errors are zero mean
and follow a Gaussian distribution, i.e., e ∼ N (02K ,C), where
0N ∈ RN is the vector of zeros and C is the error covariance

matrix defined as C = E{eeT }. This is often a good assumption,
according to the asymptotic properties of maximum likelihood es-
timators [23]. Under this assumption, the MVU estimator of the
source location is [24]

ŝ =
(
HTC−1H

)−1

HTC−1ŝ. (9)

In practice, we do not know the error covariance matrix, but it is
described in the next section how we can estimate it.

3.1. Finding the Optimal Weights

To find the optimal weights for the different location estimates ob-
tained in Section 3, we need to know the covariance matrices of the
localization errors. This section is dedicated to explaining how to
estimate these in practice.

First, let us write the location estimate obtained using node k as

ŝk = ĉkb̂k +mk. (10)

Furthermore, let us model the range and DOA estimates from each
node as

ĉk = ck + δk, and θ̂k = θk + ξk, (11)

with δk and ξk being the range and DOA estimation errors, respec-
tively. Using these additive noise models, we can rewrite the k’th
source location estimate as

ŝk = (ck + δk)

[
cos(θk + ξk)
sin(θk + ξk)

]
+mk. (12)

We seek an additive noise model, to be able to model the noise co-
variance matrix model. The first step in obtaining such model is
to rewrite the above expression using trigonometric identities. This
leads us to

ŝk = (ck + δk)R(θk)

[
cos ξk
sin ξk

]
+mk. (13)

If we assume that the DOA estimation error is small, we can apply
small angle approximations, i.e., cos ξk ≈ 1 and sin ξk ≈ ξk. Us-
ing these approximations, we get the following expression for the
location estimates:

ŝk ≈ s+ δkbk + (ckξk + δkξk)b
′
k. (14)

That is, the error vector associated with the k’th location estimate
can be approximated by

ek = s− ŝk ≈ δkbk + (ckξk + δkξk)b
′
k, (15)

The error covariance is needed for the optimal weighting, and it is
given by Re = E{ekeTk } where E{·} is the mathematical expecta-
tion operator. If we assume that the DOA and range errors are un-
correlated, we get that Re ≈ QkRvQ

T
k , where Qk = [bk ckb

′
k],

Rv = E
{
vkv

T
k

}
≈
[
σ2
δk

0
0 σ2

ξk

]
, (16)

with vk =
[
δk ξk

]T , and σ2
δk

and σ2
ξk

are the variances of δk and
ξk, respectively. The error variance matrix for the stacked location
estimates needed in (9) can then be formed as

C =

[
C1 0

. . .
0 CK

]
. (17)

The remaining task is then to estimate the variances of the DOA and
range estimates.
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3.2. Estimating DOA and range variances

To estimate the DOA variance, we can, e.g., assume a model for the
source to be localized. Many parts of audio signals, such as voiced
speech and musical instrument recordings, are quasi-periodic, and a
well known model for such signals is the harmonic model. Let us
then consider a scenario where a node consists of P microphones
organized in a uniform linear array structure. This example is con-
sidered for illustration purposes, but can be generalized to hold for
other array structures. If we preprocess our real audio recordings
using the Hilbert transform and assume the microphones are closely
spaced compared to the source-to-node distance, we can model our
observations using sensor p at time instance n as

xp(n) =

L∑
l=1

αle
jlω0ne−jlω0fsp

d sin θ
v + w(n), (18)

where L is the harmonic model order, αl is the complex amplitude
of the l’th harmonic, ω0 is the fundamental frequency, fs is the sam-
pling frequency, d is the spacing between two adjacent microphones,
θ is the DOA, v is the speed of sound, and w(n) is observation noise
(microphone self-noise, interfering sources, reverberation, etc.). If
we haveN observations in time usingP microphones, and the model
in (18) holds with the additional assumption that the observation
noise is white Gaussian with equal variance on each microphone,
it can be shown that the asymptotic Cramér-Rao bound (CRB) on
the DOA estimation variance is [25]

CRB(θ) =
[(

c

ω0fsd cos θ

)2
6

NP 3

+

(
tan θ

ω0

)2
6

N3P

]
PSNR−1, (19)

where PSNR = σ−2
w

∑L
l=1 l

2|αl|2, with σ2
w being the variance of

the noise, w(n). If we utilize a DOA estimator that attains the CRB,
we can replace σ2

ξk
by CRB(θk). Some of the parameters needed

to calculate the CRB of θk are unknown in practice and has to be
estimated. These are θk itself, ω0, L, |αl|2, and σ2

w. The DOA can
be replaced by its estimate, which is input to the localization meth-
ods. In this paper, we use the nonlinear least squares (NLS) method
in [25] for DOA estimation in each node. This method exploits the
harmonic model. The pitch and model order are estimated jointly in
each node, but using the NLS estimator in [26]. Note that the pitch
and DOA could be estimated jointly using the NLS method in [25],
but we estimate the parameters in two stages to reduce the compu-
tational complexity. Finally, the amplitudes and noise variances are
estimated using maximum likelihood estimators [27] on each micro-
phone signal, and averaged within each node, i.e.,

α̂p,k = (ZHZ)−1ZHxp,k, (20)

α̂k =
1

P

P−1∑
p=1

α̂p,k, and |α̂l,k| = [α̂p,k]l, (21)

σ̂2
wk =

P∑
p=1

‖xp,k − Z(ω̂0,k)α̂p,k‖2. (22)

In the above equations, α̂p,k and α̂k are vectors of estimates of
the harmonic amplitudes in node k and microphone p of node k,
respectively, α̂l,k is an estimate of the l’th harmonic in node k,
and [·]n denotes the n’th element of a vector. Furthermore, σ̂2

wk

is an estimate of the noise variance in node K, xp,k ∈ RN is a
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Fig. 1. RMSEs of location estimates obtained from synthetic data
using the LS and MVU estimators for varying (a) DOA noise vari-
ance, and (b) range noise variance.

vector of time-consecutive samples from microphone p in node
k, ω̂0,k is the pitch estimate obtained in node k, and Z(ω̂0,k) =[
z(ω̂0,k) · · · z(Lω̂0,k)

]
, z(lω̂0,k) =

[
1 ejlω̂0,k · · · ejlω̂0,k(N−1)

]T
.

The distribution of the range errors depends on the type algo-
rithm used for range estimation in the TOF cameras. In [28], for ex-
ample, the range distribution was derived for cameras using correla-
tion of amplitude-modulated continuous-wave signals. They showed
that the computed range follows an offset normal distribution, and
has a variance that can be related to the measured amplitude of the
modulation signal. In other words, the range variance will depend
on distance and reflectivity. Existing TOF cameras typically pro-
vide amplitude estimates [29] that can be used to estimate the range
variance. To give an idea of the achievable range estimation accu-
racy with a TOF camera, the SoftKinetic DS311 yields range errors
below 3 cm at 3 m [11], and the more expensive SR4000 camera
typically has the same accuracy, but up to a distance of 10 m [29].

4. EXPERIMENTAL RESULTS

In our experiments, we shed light on the potential gain of using both
angle and range information for localization using distributed micro-
phone arrays, where the range information is thought to be obtained
using TOF cameras. This was achieved by comparing the LS method
presented in Section 2, and the minimum variance unbiased (MVU)
estimator proposed in Section 3. Moreover, to further evaluate the
benefit of our proposed optimal weighting in some of the experi-
ments, we included a mean estimator which just takes the mean of
the location estimates in (3.1).

The first experiment, was using synthetic data to verify our
model and method. A series of Monte-Carlo simulations were con-
ducted, where the source position was sampled uniformly within
a circle with center [0, 0] m, and a radius of 1 m. The positions
of three distributed arrays were sampled uniformly in the region
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between two circles with center [0, 0] m and radii of 2 m and 3 m,
respectively. Then, white Gaussian noise was added to the true
angles and ranges between the array positions and the source po-
sition. With this setup, we first fixed the range noise variance to
(2 · 0.03 m)2 in each node1 while the noise variance on the DOAs in
radians were varied but identical in each node. For each DOA noise
variance, 10000 Monte-Carlo simulations were conducted, yielding
the results in Figure 1a in terms of root MSEs (RMSEs). For all
DOA noise variances, the proposed MVU estimator outperforms the
angle-only based LS estimator. Moreover, we observe that there is
no visible difference between using the true (MVU) and observed
(MVU (obs)) angles and ranges when forming Qk. Finally, we note
that above a DOA noise variance of 10−2 rad2, there is no difference
between the mean and MVU estimators. However, the difference
is expected to be larger, if the noise on the DOAs and ranges vary
across the nodes. We then conducted a second series of Monte-Carlo
simulations, where the DOA noise variance was fixed to 0.01 rad2,
while the range variance was varied. These results are depicted in
Figure 1b. In all cases, the proposed MVU estimator clearly outper-
forms the angle-based only approach. The potential of using range
information (e.g., obtained using TOF cameras) is largest for low
range noise variances. In summary, the results in Figures 1a and 1b
cleary show that localization can be conducted more accurately if
range information is available and exploited.

In the second experiment, we applied the proposed method for
localization of a real speech signal. The signal was single channel
and contained a female speaker uttering the sentence “Why were you
away a year, Roy?” two times. To generate a multichannel signal,
we used a online available room impulse response (RIR) genera-
tor [30]. The simulation scenario was as follows: three nodes were
used to localize the speaker in a room with dimensions (5×4×3) m.
Each node consisted of a uniform linear array (ULA) with three om-
nidirectional microphones with 4 cm spacing. During the scenario,
the speaker was moving from the left side of the room to the right.
The node placements and source movement is depicted in Figure 2a.
First, we then considered the case with no reverberation. To esti-
mate the DOAs needed in the localization, we first extracted time-
consecutive blocks of 200 samples from each microphone in each
node. Then, on the blocks from the first microphone in each node,
we applied the NLS method in [26] to estimate the pitch and har-
monic model order of the speech signal jointly. The pitch and model
order estimates were then given as input to the method in [25] for
DOA estimation in each node. The range estimate in each node was
generated synthetically by assuming a range standard deviation of
1.5 m, and adding white Gaussian noise with this standard devia-
tion to the true ranges2. Using these DOA and range observation, we
then conducted the localization using the LS and MVU estimators, in
Section 2 and 3, respectively, where the optimal weights were found
as described in Section 3.1. The localization errors over time for
this experiment are provided in Figure 2b. From the results, we see
that there is a clear, potential benefit of using the proposed method
as opposed to using an angle-only estimator. Using the same setup,
except that reverberation with a T60 of 0.3 s was added, we con-
ducted another simulation. With reverberation, the errors in Figure
2c were obtained. As expected, the errors are generally higher with
reverberation, but again the proposed MVU estimator clearly has a
potentially better localization performance compared to when using
the angle-only based LS estimator.

1This corresponds to setting the standard deviation to two times the typi-
cal error of the SoftKinetic DS311 up to 3 m.

2This roughly corresponds to the accuracy of the SoftKinetic DS325 cam-
era.
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Fig. 2. Localization results [(a) without and (b) with reverberation]
obtained with the LS and MVU estimators in the scenario depicted
in (a).

5. CONCLUSION

In this paper, we have considered the problem of audio localization
using distributed microphone arrays. Traditionally, this problem has
been tackled by estimating the DOA of the audio source in each node
of a sensor network, where each node consist of a microphone array.
The number of microphones in each array, however, is typically low
in practice, limiting the DOA estimation accuracy and therefore also
the accuracy of the location estimate. To improve on this, we there-
fore propose a new approach, where the range of the audio source
is also estimated in each node. The range can, for example, be es-
timated using time-of-flight cameras (e.g., one in each node) at a
very high accuracy. Moreover, we proposed a method for optimally
weighting the DOA and range estimates from the different sensor
nodes, to obtain a location estimate of an audio source, and showed
how the optimally weights can be found. In our experiments, we
have showed that there is a significant potential of using additional
range information in localization of audio by using both microphone
and cameras to capture the source. This was shown on both syn-
thetic and real speech data. In future work, the method proposed
herein will be applied on real, measured data.
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