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ABSTRACT

Direction of Arrival (DOA) estimation of gunshots is an important

asset to law-enforcement agencies and defense forces, for shooter lo-

calization is key to improving public and troop safety. Solutions vary

according to scenario, application, and available resources. As the

distance between the firing position and the sensor array increases,

as in a typical sniper scenario, signal to noise ratio decreases and

the estimation degrades. This paper proposes a gunshot DoA esti-

mation algorithm to be used with highly noisy signals. We combine

exhaustive search for selecting pairs of microphones from the array

to attain the best DOA estimation results and fast response time for

different shooting scenarios. We are particularly interested in highly

corrupted signals for which state-of-the-art algorithms fail. Exper-

imental results from simulated and recorded gunshot signals were

used to evaluate the performance of the proposed scheme.

Index Terms— Gunshot signal, direction of arrival, iterative

least squares, exhaustive search, consistent fundamental loop.

1. INTRODUCTION

The first work related to the propagation of ballistic waves [1] dates

from 1946, in which experiments to ascertain the wave forms and

laws of propagation and dissipation of ballistic shock waves were

described. Issues related to the physics of the sound propagation [2],

useful to gunshot signal analysis, appeared in 1971.

A typical signal from a rifle gunshot is impulsive and consists

mostly of two characteristic waves: the muzzle blast (MB) and the

shock wave (SW). The first component is a consequence of the ex-

plosion of the charge in the gun barrel, lasts 3 to 5 milliseconds,

and propagates through the air at the speed of sound [3]. The lat-

ter is due to the dispersion of air molecules caused by motion of the

projectile when traveling at supersonic speed [3] and usually arrives

first in a microphone when it is located in the shock wave field of

view. The “N” shape shockwave signal lasts typically 0.3 to 0.5 mil-

liseconds. Fig. 1 shows a gunshot signal originated from a 7.62 mm

M964 Light Automatic Rifle, at a distance around 300 meters from

the recording position. The high frequency portion of the signal on

the left side of this figure refers to the shock wave and its reflections,

and the following one (lower frequency) corresponds to the muzzle

blast and its reflections.

Assuming we are interested in the shooter direction, we estimate

the DOA of the MB component (assumed detected [4]), which trav-

els in a straight line from the shooter to the sensors. On the other

hand, the SW component that arrives at the sensors originates in
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Fig. 1. Shockwave and muzzle blast components originated from a

rifle 300 m from the recording microphone.

a point known as “detach point” [5] or “originating point” [6], lo-

cated in the bullet trajectory. When the SW component is present, a

coarse estimation of the shooter location can be obtained from a sin-

gle microphone array [7]. When the gunshot is far from the record-

ing position (say more than 400 meters), signal to noise ratio (SNR)

decreases and DOA estimation degrades, as noise peaks may be con-

fused with MB peaks, crucial to a reliable estimation.

Fig. 2 shows a gunshot signal originated from a rifle 500 meters

from the sensor. The MB component, highlighted by the red rect-

angle, has amplitudes comparable to the noise peaks, which hinders

DOA estimation considerably.

50 100 150 200 250 300 350 400

−2

0

2

A
m

p
lit

u
d
e

Time (ms)

Fig. 2. MB signal of a rifle 500 meters away from the recording

position.

A gunshot signal may also be degraded by reflection. For these

cases, a deconvolution scheme was proposed in [8] which improves

DOA estimation for SNRs between 3 dB and 12 dB. Furthermore,

in [9], a refinement of the estimated DOA is attained by removing

microphones that are not in the direction of the first estimate and

is useful to eliminate reflections that reach those microphones with

higher intensity. This method is applicable for SNR greater than
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10 dB. In [10], a data selection algorithm, known as Iterative Least

Squares (ILS) [11], [12], applied after spectral subtraction [5], [13]

improves DOA estimation for gunshot signals with SNR between 2

and -3 dB. Nevertheless, in some cases, the distance between a sniper

and its target is such that the SNR is lower than -3 dB. We propose, in

this paper, a DOA estimation algorithm applicable to gunshot signals

with SNR below these values.

The paper is organized as follows: Section 2 describes briefly

the method of gunshot DOA estimation employed herein, as well as

the ILS algorithm. Section 3 explains the exhaustive search (ES)

approach and reviews the concept of consistent fundamental loop

(cFL) applied to DOA estimation. Section 4 shows and discusses

experimental results. Section 5 concludes the paper.

2. DOA ESTIMATION

There are several algorithms [14] that can be employed in DOA esti-

mation, including “Delay-and-Sum beamforming,” “Capon,” “MU-

SIC,” and “Generalized Cross Correlation (GCC)” [15]. The last one

can be employed with wideband signals, such as a gunshot signal.

A subclass of the GCC technique, used in this work, is the PHAT

(Phase Transform) [15].

The direction of arrival can be characterized by two angles [16]:

φ, azimuth, and θ, zenith. Fig. 3 shows the array with seven mi-

crophones used in our experiments, as well as angles φ and θ. The

azimuth angle varies between zero and 360 degrees and the zenith

varies between zero and 180 degrees. The unit vector in the direc-

tion of the wavefront propagation, aθ,φ, is given as

aθ,φ = [− sin θ cosφ − sin θ sinφ − cos θ]T . (1)
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Fig. 3. Microphone array and angles of interest [11].

2.1. The GCC PHAT

Considering an array with M microphones, we have a total of N =
M(M−1)

2
possible pairs of microphones and an equal number of

cross-correlations which will be used by GCC PHAT in the DOA es-

timation procedure. Let τij be the time difference of arrival (TDOA),

in samples, between microphones i and j; it may be estimated from

the peaks of the cross-correlation between their signals as in

τij = argmax rxixj
(τ ), (2)

where xi(n) and xj(n) are the signals arriving at the ith and jth mi-

crophones, respectively, and rxixj
(τ ) = E [xi(n)xj(n− τ )] their

cross-correlation, estimated as

r̂xixj
(τ ) =

1

L

L−1
∑

n=0

xi(n)xj(n− τ ), (3)

for xi(n) with a sample support of size L. In order to provide

more accurate results, we can interpolate the correlations around the

peak [16].

This cross-correlation estimate corresponds to the convolution

r̂xixj
(τ ) = 1

L
[xi(τ ) ∗ xj(−τ )], and is usually computed as the in-

verse Fourier transform of the cross-power spectrum density (CPSD)
1
L

[

Xi(e
jω)Xj(e

−jω)
]

. In the case of GCC PHAT, the CPSD is

normalized by its absolute value prior to the inverse Fourier trans-

form [15].

Defining the TDOA in time unit as τ ij =
τij

fs
, fs being the sam-

pling frequency, we know that it corresponds to the time the sound

travels distance dij , from microphone i to microphone j, which cor-

responds to

dij = a
T
θ,φ(pi − pj), (4)

where pi and pj are the microphone coordinates. Therefore, we can

also write

τ ij =
dij

vsound

= a
T
θ,φ∆pij , (5)

where ∆pij =
pi−pj

vsound
. If we define the least squares (LS) cost

function as

ξθ,φ = (τ 12 −∆p
T
12aθ,φ)

2 + ...+ (τ (M-1)M −∆p
T
(M-1)Maθ,φ)

2, (6)

we can find a DOA estimation by taking the gradient of this func-

tion with respect to aθ,φ and making the result equal to zero. The

resulting estimate is given by aDOA = R−1p, where

R = ∆p12∆p
T
12 + ...+∆p(M-1)M∆p

T
(M-1)M, and (7)

p = τ12∆p12 + ...+ τ (M-1)M∆p(M-1)M. (8)

Finally, from the elements of aDOA = [ax ay az], the hor-

izontal angle (azimuth) is given by φ = tan−1 ay

ax
and the vertical

angle (zenith) is given by θ = cos−1 (−az). This LS-based TDOA

estimation method was proposed in [17] and applied in [18] to de-

termine which technique among three closed-form localization tech-

niques provides best results.

2.2. Other Algorithms

Steering Response Power (SRP) [19] is another algorithm that can

be employed in DOA estimation. It is based on spatial spectral esti-

mation [20], making use of the spatial correlation matrix. In [21], the

equations governing a 3-dimensional geometry array are described,

and the equation that corresponds to DOA estimation is presented as

Θ̂ (θ, φ) = arg maxθ,φ1
T
R̂θ,φ1, (9)

where R̂θ,φ denotes an estimate of the spatial correlation matrix ob-

tained by averaging the samples that arrive at the array. In other

words, SRP searches (in a grid of possible values) for the set of an-

gles (θ, φ) that maximizes the array’s output power.

The ILS algorithm tries to eliminate TDOAs subject to errors

due to spurious signals [12] that produce undesirable peaks in the

cross-correlations between signals arriving at the microphones. Our
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array has seven microphones, leading to a total of N = 21 possi-

ble pairs and an equal number of cross-correlations. This algorithm

takes into account the fact that there may be cases in which not all

estimated delays contribute to a good outcome [11]. The ILS al-

gorithm eliminates correlations (among 21 possibilities) that con-

tribute less to the minimization of the cost function in Eq. (6). In

other words, the pair (i, j) of microphones that originates the highest

value (τ ij − ∆pT
ijaθ,φ)

2 is removed and the cost function is eval-

uated again, normalized by the number of terms. This procedure

is repeated until only six (or five) terms remain in the cost func-

tion [11], [12].

3. EXHAUSTIVE SEARCH

Although effective in many cases, the ILS algorithm leads to a sub-

optimal solution. We maintain that better results can be obtained

with exhaustive search without adding unreasonable computational

complexity. In the case of an array with a small number of micro-

phones (M = 7 in our case), typically employed in sniper location

devices, evaluating the LS cost function for all possible combina-

tions of n < N microphone pairs, improves performance consider-

ably. Moreover, if n is not close to N/2, the number of combinations

to be evaluated,

(

N
n

)

, is small and would cause no noticeable de-

lay. The number of pairs of microphones n ranges from 3 to N = 21
while all possible combinations can be found by incrementing a bi-

nary counter from 1 to 2N and separating those whose sum of bits

equals n. The position of each bit corresponds to a specific pair of

microphones. In the following, after defining ES(n), the exhaustive

search of n pairs, we see that a small value of n presents the best

results, in average, for heavily noisy signals.

At first, a pseudo-code for ES(n) for an array of M microphones

is described:

1: Set (binary counter) BC = 1 and N = M(M−1)
2

2: for BC = 1 to 2N

3: if sum of bits of BC = n
4: Evaluate cost function ξθ,φ, in Eq. (6)

5: Store ξθ,φ(BC)
6: end

7: end

8: Find BC with the lowest ξθ,φ(BC)
9: Choose the n mics pairs from positions of bits “1”

10: Estimate DOA with the n corresponding τ̄ij

As before mentioned, when the SNR decreases, noise peaks

tend to increase. In these cases, several peaks appear in the cross-

correlations between signals arriving at a pair of microphones, and

there may be cases in which the highest peaks are due to noise, in-

stead of gunshot signal. For very low SNRs, among all N = 21
possible cross-correlations, there may be cases where only a few

ones have the correct highest peak due to signal, not to noise. That

is the reason why we obtain more accurate results with fewer data.

We might even think that the probability of having 3 correct peaks

would be larger than those of having 4, 5, 6 or more correct peaks.

Nevertheless, for low SNR, ES(3) does not result, in average, to bet-

ter results than ES(n), n> 3. In Fig. 4, we take as an example the

case of n = 3 pairs from only three microphones—(2,4), (4,6) and

(6,2)—which define a plane.

Notice in Fig. 4 that, for this choice of pairs, unit vectors a1 and

a2 have the same horizontal projection (on plane x′y′) and there-

fore the same components, a1x = a2x and a1y = a2y . Also, their
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Fig. 4. Ambiguity in ES(3) when the three pairs define a plane.

vertical components are opposite, a1z = −a2z , which, being per-

pendicular to plane x′y′, have no influence in the delays. Hence,

the azimuths of signals arriving from the directions of the unit vec-

tors a1 and a2 are the same (φ1 = φ2), and their zenithal angles

are symmetrical (θ1 = −θ2). As both vectors cause the same delay

when captured by the three microphones, it becomes impossible to

determine, from the three TDOAs, whether the correct DOA is a1

or a2. Also note that, in these cases, matrix R in Eq. (7) is singular.

Because of this ambiguity, whenever 3 pairs define a plane, we do

not have a single solution for ES(3). On the other hand, when three

pairs do not define a plane—(2,4), (4,6) and (3,5), for instance—this

problem does not occur and ES(3) presents a single solution.

We decided to choose the value of n which was most likely to

give the best results for simulated signals. In order to assess the per-

formance of ES(n) for different values of n, we synthesized gunshot

signals using as clean reference a muzzle blast component originated

from a rifle recorded at a distance 236m from the shooting position

(SNR greater than 20dB). We then chose randomly directions (az-

imuth and zenith) and gave the corresponding delays to the reference

signal in order to simulate signals arriving at each microphone of the

array depicted in Fig. 3. Afterwards, we added noise also recorded

by the microphone array (noise only portions of the recorded sig-

nal), such that we were able to control the SNR1. In our experiment,

for each simulated gunshot, we varied n in ES(n) from 3 to 21, and

observed for which n ES(n) offered the best result, for SNR from

-3 dB to -8 dB. For SNR below -8 dB, current state-of-the-art algo-

rithms fail if denoising schemes are not applied. For SNR above -3

dB, ES(4) provides results comparable to ES(5), ES(6) or others.

Table 1 shows the relative frequency of best results, with an en-

semble of 200 independent runs, for ES(3) to ES(7) with simulated

signals having a SNR of -8 dB. For each run, the best result corre-

sponds to the ES(n), n varying from 3 to 7, that provides the lowest

error defined as e2θ + e2φ, where eθ = θ − θ̂ is the error between

simulated and estimated zenithal angles, whereas eφ = φ− φ̂ is the

error between simulated and estimated azimuthal angles.

ES(4) provided the lowest (average) error for the largest number

of runs for SNR equal to -8 dB. We have observed that the same

happens for different SNR in the range of interest, -8 dB to -3 dB.

1We define SNR herein from a 7.5 ms window of clean signal containing
the MB component with variance (σ2

s ). The variance of the noise (σ2
n) is

chosen such that a desired SNR (in dB) is obtained as 10 log
(

σ2
s/σ

2
n

)

.
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Table 1. Relative frequency of lowest error (RFLE) for ES(n)

n 3 4 5 6 7

RFLE 0.10 0.36 0.26 0.14 0.14

Values of n from 8 to N = 21 were also tested for highly noisy

signals, but did not lead to better results than those with lower n.

For ES(3), the exhaustive search was carried out in a sub-space

of possible combinations; those in which the three pairs of micro-

phones defined a plane were not considered. In the cases where the

3 pairs of microphones form a plane, a Fundamental Loop (FL) [22]

is formed. We say that an FL with n pairs of microphones is formed

when there is a cyclic path. For example, when n = 3 and the mi-

crophone pairs are (i,j), (j,k), and (k,i). An FL is said to be consistent

(cFL) if the sum of TDOAs in this loop is zero (τij+τjk+τki = 0).

This was defined in [22] as “zero cyclic sum (ZCS) condition.” If all

n TDOAs are correctly estimated, then ZCS condition is satisfied.

However, converse is not true: if ZCS is satisfied, we cannot guaran-

tee that all TDOAs are correct.

The concept of FL is also valid for more than three pairs of mi-

crophones and could be taken into account in the DOA estimation

of gunshot signals. Whenever the DOA is perfectly estimated, all

TDOAs are correctly estimated such that the cost function in Eq. (6)

equals zero. In a cFL where
∑

ij
τij = 0, ij ∈ FL, we claim that the

cost function ξθ,φ formed by the terms corresponding to that loop is

also zero. Herein, we chose to minimize (in the least squares sense)

the cost function ξθ,φ instead of searching for cFL solutions moti-

vated by the fact that these criteria are equivalent when dealing with

non-degraded signals. For highly noisy signals, optimizing ξθ,φ is

still effective while searching for cFLs is not.

4. EXPERIMENTAL RESULTS

In order to verify which algorithm performs better, either for simu-

lated directions or for recorded gunshot signals, we varied the SNR

starting from -3 dB and below and compared the results for four

algorithms here designated as SE (standard GCC PHAT estimation

with 21 pairs), ILS [11, 12], SRP [19, 21], and the proposed ES(4).

In all tests, the ES(4) algorithm produced similar or better results

than the others. Fig. 5 compares SE, ILS, SRP, and ES(4) in 25

gunshots fired with random DOAs, SNR equal to -8 dB. We can

observe that ES(4) performs much better than the current state-of-

the-art ILS and SRP algorithm for SNR= -8 dB.
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Fig. 5. Comparing ES(4).

We ran 200 random DOAs in the same manner as the simulations

that originated Table 1, for each integer SNR from -8 dB to -2 dB,

and computed the average error, in dB, as 10 log
(

e2θ + e2φ
)

for each

algorithm (SE, ILS, SRP, and ES(4)). Fig. 6 shows the results. Here,

again, the performance of the proposed algorithm was better than

those of competing state-of-the-art algorithms.
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Fig. 6. Performance of each algorithm with different SNRs.

In order to verify that the results obtained with simulated sig-

nals are equivalent when dealing with recorded signals, we applied

the same algorithms to 8 gunshot signals. The weapons used were

the 7.62 mm M964 Light Automatic Rifle and the 5.56 mm Tavor

Assault Rifle; the distance between the shooter and the microphone

array was 1,062 m. The recordings took place at a Brazilian Army2

unit responsible for the evaluation of ordnance. In these shots, the

lowest SNR is equal to −8.13 dB. The array was positioned in a

place so that there was a direct line of sight between the microphones

and the shooter. The correct azimuthal and vertical angles were

measured with a “TOPCON” topography station, model CTS3000.

Fig. 7 shows the errors, and we can observe that ES(4) outperforms

the other algorithms.
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Fig. 7. Performance of each algorithm with real signals.

5. CONCLUSION

We employed exhaustive search to DOA estimation of gunshot sig-

nals and showed that the use of 4 pairs leads to better results when

SNR is low. Combining ES(n) for different values of n is currently

under investigation. We also explained why ES(3) does not work

as well as ES(4), relating this fact to the concept of consistent fun-

damental loop. We compared the performance of SE, ILS, SRP,

and ES(4) with simulated and real signals, and verified that, in both

cases, ES(4) performs better than the others when the SNR is low,

more precisely from -8 dB to -3 dB. For SNR between -3 dB and

2 dB, the algorithm also works well, but the technique presented

in [10] produces satisfactory results. Above 2 dB, the ILS algorithm

works very well, while for clean signals (SNR greater than 20 dB),

the standard estimation is as robust as the others.

2Centro de Avaliações do Exército (Army Evaluation Center).
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