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ABSTRACT

We address the problem of estimating direction-of-arrivals (DOAs)
for multiple sound sources using a single acoustic vector sensor
(AVS) in an enclosed room environment. It is well-known that
multi-source DOA estimation in an enclosed environment is chal-
lenging due to room reverberation, environmental noise and overlap-
ping of the source spectra. In this work, we propose a multi-source
DOA estimation algorithm which exploits co-location of the sensor
elements in AVS. We identify time-frequency (TF) zones of the
received signals in which only one source is dominant with a high
signal-to-reverberation ratio. DOA estimation is then achieved via
the use of clustering of the Hermitian angle feature. Simulation
results show that the proposed DOA estimation algorithm is robust
to both reverberation and environmental noise.

Index Terms— Multi-source DOA estimation, acoustic vector
sensor, time-frequency sparsity, Hermitian angle

1. INTRODUCTION

Estimating the direction-of-arrivals (DOAs) of acoustic sources is
important for automatic camera steering, beamforming, robotics and
surveillance [1–3]. The presence of reverberation and background
noise present challenges that need to be addressed in a realistic en-
vironment. In addition, estimation of DOAs of multiple and simul-
taneously active sources in an adverse environment is still an open
problem. For such applications, conventional approaches often uti-
lize an array of omni-directional microphones and DOA estimation
is achieved by exploiting phase-delay information between the mi-
crophones [4]. However, conventional arrays often require a large
aperture which presents limits in space-constrained applications.

An acoustic vector sensor (AVS) [5] which consists of one
monopole pressure sensor element collocated with three orthog-
onally oriented dipole elements has drawn much interest in the
research community. Unlike the conventional array which requires
spacing between microphones, a single AVS can accomplish spatial
filtering with a compact configuration. For DOA estimation using
AVS, an initial work was presented in [5] in which the Cramér-Rao
lower bound (CRLB) was derived for a free-space scenario with
Gaussian additive noise. In addition, the intensity and velocity-
covariance based DOA estimators were proposed using a single
AVS. In [6], a maximum steered response power (SRP) estimator
was proposed to generalize the intensity and velocity-covariance
based algorithms. However, it was not clear that which afore-
mentioned algorithm and its parameters attain the CRLB. In [7], a
maximum likelihood estimator was proposed as a specific realiza-
tion of the SRP algorithm and the optimal parameter which attains

the CRLB can be obtained with knowledge of noise statistics. In [8],
the reverberation effect was examined for the intensity-based esti-
mator. The derived statistical model shows that the DOA estimate
is biased in the presence of reverberation. In addition to the use of
single AVS, an array of AVSs has also been employed to improve
the DOA estimation performance by exploiting beamforming and
subspace methods [9–13]. Quaternion based approach has been
found to achieve a more accurate subspace decomposition for DOA
estimation [14]. In [15–17], sound source tracking algorithms have
been developed for AVS.

Although significant progress has been made, DOA estimation
of multiple simultaneously active sources in a reverberant environ-
ment is still challenging. Conventional multiple signal classifica-
tion (MUSIC) algorithm requires more number of sensors than the
number of sources [18]. In addition, most of the aforementioned
algorithms assume a free-space model [5–7, 9, 12, 13] and accuracy
is expected to reduce with increasing reverberation time [8]. In re-
cent studies, it is assumed that speech source signals are sparse in
the time-frequency (TF) domain and hence DOA estimation can be
achieved by clustering the single-source TF points [19–21]. While
these methods can be directly extended to the AVS, the co-location
structure of the AVS elements and its intrinsic advantages have not
been fully exploited for multi-source DOA estimation in a reverber-
ant environment.

In this work, a multi-source DOA estimation algorithm using a
single AVS is proposed. Since the effect of reverberation varies with
frequency bins, the proposed algorithm identifies low-reverberant-
single-source (LRSS) zones in the TF domain of the received sig-
nals. These LRSS zones are defined as those with high signal-to-
reverberation ratio and that only one source is dominant compared
to the other sources. We proceed to explain why the proposed LRSS
identification technique is well suited for the structure of AVS. After
the identification of LRSS zones, we propose to exploit the Hermi-
tian angle [22, 23] which partitions the identified LRSS zones into
different clusters corresponding to different sources. Finally, DOA
estimation is performed on each cluster.

2. MATHEMATICAL MODEL

Consider I active sound sources in a reverberant environment. Given
an AVS with one monopole and three orthogonal dipole elements co-
located at the origin, the received signals can be modeled as[

xp(n)
xv(n)

]
=

I∑
i=1

si(n) ∗
[
hp,i(n)
hv,i(n)

]
+

[
ep(n)
ev(n)

]
, (1)

where xp(n) and xv(n) are the omni-directional and the three or-
thogonal element outputs, respectively, n is the discrete time index,
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si(n) is the ith source signal, hp,i(n) is the impulse response from
the ith source to the monopole pressure element, hv,i(n) is a 3 × 1
impulse response sample vector from the ith source to the dipole
elements and ∗ denotes convolution operator. The variables ep(n)
and ev(n) are defined as the noise signals. Using short-time Fourier
transform (STFT), (1) can be represented as

x(k,m) =

I∑
i=1

si(k,m)hi(k) + e(k,m), (2)

where x(k,m) = [xp(k,m), xTv (k,m)]T is the 4×1 STFT coeffi-
cient vector of the received signals, si(k,m) is the STFT coefficient
of the ith source signal, hi(k) = [hp,i(k), hTv,i(k)]T is the 4 × 1
vector formed by the STFT coefficients of the impulse responses,
e(k,m) = [ep(k,m), eTv (k,m)]T is the vector of noise STFT co-
efficients, m is the frame index and k is the frequency-bin index.

In order to analyze the effect of reverberation, we further decom-
pose hi(k) into direct-path component hd

i (k) and reflection compo-
nents hr

i(k) such that (2) can be rewritten as

x(k,m) =

I∑
i=1

si(k,m)
[
hd
i (k) + hr

i(k)
]

+ e(k,m). (3)

Since hd
i (k) contains only component from the direction of the

source and hr
i(k) contains all reflected components that are depen-

dent on the environment, they can be expressed as

hd
i (k) = e−ωkτiqi, (4)

hr
i(k) =

∑
r

αri e
−ωkτ

r
i qri , (5)

where qi = [1, uTi ]T , ui = [cosψi cosφi, cosψi sinφi, sinψi]
T

define the sensor manifold pointing towards the ith source, φi and
ψi are the azimuth and elevation direct-path incident angles, respec-
tively. The variable τi denotes the direct-path time delay from the ith
source to the sensor, ωk = 2πk/K is the discrete angular frequency,
qri = [1, uri

T ]T , uri = [cosψri cosφri , cosψri sinφri , sinψri ]T

define the manifold pointing towards the rth reflection component,
φri and ψri are the corresponding incident angles, τri is the time-
delay of the reflection and αri is the attenuation due to absorption
at the room boundaries. The objective of this paper is therefore to
estimate ui which, in turn, provides DOA estimates of the sources.

3. THE PROPOSED ALGORITHM

It is well-known that the magnitude response of hi(k) varies across
frequencies. This implies that the effect of reverberation varies
across frequency bins. We therefore propose an algorithm to iden-
tify LRSS zones in the TF domain where only one of the source
signals with high signal-to-reverberant ratio is dominant. Using
our proposed approach for the identification of LRSS zones, we
show that the co-location of the vector-sensor elements in AVS is
well-suited for the detection of LRSS zones. The detected LRSS
zones are then used for DOA estimation. The flow diagram of the
proposed algorithm is illustrated in Fig. 1.

3.1. Detection of Low-reverberant-single-source zone

Consider a TF zone Z(k′,m′) of size Kz × Mz with zone index
(k′,m′), where Kz is the zone width across the frequency bins and
Mz is the zone length across time frames. Assuming that the zone

STFT 
LRSS zone 
detection 

DOA 
estimation 

Feature 
extraction 

& clustering 

Fig. 1. Block diagram of the proposed DOA estimation algorithm.

has its centroid located at x(kc,mc) and that the zone has 50% over-
lap with adjacent zones, the zone indices are then given by k′ =
b2kc/Kze, m′ = b2mc/Mze, where b·e denotes the nearest integer.
Within such a TF zone, if only the ith source is dominant and that the
direct-path component is significantly larger than the reflection com-
ponents and noise, the received signal in (3) can be approximated by

x(k,m) ≈ si(k,m)hd
i (k), (6)

where hd
i (k) is the direct-path component defined in (4). The co-

variance of x(k,m) across all the TF points within the TF zone can
then be estimated as

RZ(k′,m′) = E{x(k,m)xH(k,m)}

≈ E{|si(k,m)|2hd
i (k)hd

i

H
(k)}

= σ2
i qiq

T
i , (7)

where σ2
i = E{|si(k,m)|2} is the variance of the ith source signal

and E{·} denotes the expectation over the TF points within the TF
zone Z(k′,m′).

It can be seen that for a LRSS zone, the rank of RZ(k′,m′) → 1.
On the contrary, as the number of sources or αri in (5) increases, the
rank of RZ(k′,m′) will increase. Consider an example case in (3)
where multiple sources are present in a reverberant-free environ-
ment. The covariance of

∑I
i=1 si(k,m)hd

i (k) will result in a rank
that is greater than one as long as the sources are independent. In ad-
dition, in the presence of increased reverberation, the covariance of
si(k,m)

[
hd
i (k) + hr

i(k)
]

will result a rank greater than one even
if the TF zone corresponds to a single-source zone. This is due to
the fact that si(k,m)hr

i(k) is linearly independent across frequency
bins as described in (5) where the scaling factor αri e

−ωkτ
r
i for each

qri in the summation varies across frequencies.
Unlike conventional microphone arrays, it is important to note

that the above rank-1 property of RZ(k′,m′) for LRSS zone is
derived from hd

i (k) where the four channels of an AVS share
the same phase delay. The direct-path component of the im-
pulse response of a conventional microphone array is described
by h

′d
i (k) = [e−ωkτi,1 , e−ωkτi,2 , · · · , e−ωkτi,P ]T , where τi,p

is the time-delay from the ith source to the pth microphone, and P
is the number of microphones. It can be seen that h

′d
i (k) is linearly

independent across frequency bins and therefore the corresponding
RZ(k′,m′) does not have the rank-1 property; detection of LRSS
zones is thus not straightforward. It is also worth noting that the
definition of RZ(k′,m′) in (7) is different from [20]; equation (7)
is defined as an average across time and frequencies, while the co-
variance in [20] is averaged across time frames only. It is indeed
this manipulation of averaging across frequencies that exploits the
common phase-delay property of the four channels in AVS for the
detection of the LRSS zones.
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To detect the LRSS zones, we divide the TF plane into zones
of size Kz ×Mz with 50% overlap between the zones across time
frames and frequency bins. Each of these zones will be verified if
they are LRSS zones by evaluating the rank of the corresponding co-
variance matrix. To determine whether the rank of the 4× 4 covari-
ance matrix RZ(k′,m′) approaches to one, the coherence test [20]

CZ(k′,m′) =
1

6

∑
a6=b

|R(a,b)

Z(k′,m′)|
2

R
(a,a)

Z(k′,m′)R
(b,b)

Z(k′,m′)

(8)

can be used, where CZ(k′,m′) is the coherence value for the zone
Z(k′,m′),R(a,b)

Z(k′,m′) is the (a, b) element of the matrix RZ(k′,m′).
In (8), 0 ≤ CZ(k′,m′) ≤ 1 and a higher value of CZ(k′,m′) implies
that the rank of RZ(k′,m′) is closer to 1. Hence, in order to detect
the LRSS zones, we define a threshold Cthd such that zones with
CZ(k′,m′) > Cthd will be designated as LRSS zones. These zones
will then be used for multi-source DOA estimation.

3.2. Feature extraction

Given a set of LRSS zones Γ that contains all of the identified LRSS
zones {Z(k′,m′)|Z(k′,m′) ∈ Γ} in a time block, these zones are
clustered such that each cluster corresponds to a different source and
DOA estimation can be performed on each cluster. To cluster the
LRSS zones, the Hermitian angle will be exploited.

Theorem: The Hermitian angle between two arbitrary complex
vectors r1 and r2 is defined as [22]

θ = cos−1(| cos(θC)|), (9)

where the cosine of complex-valued angle θC is given by cos(θC) =
rH1 r2

/
‖r1‖‖r2‖ and ‖ · ‖ denotes Euclidian norm. In addition, the

Hermitian angle between r1 and r2 will remain the same even if the
vectors are multiplied by any complex scalars [23].

To extract the feature corresponding to the source DOAs using
Hermitian angle, we first take the TF point with the highest power in
each LRSS zone, i.e.,

xZ(k′,m′) = arg max
x(k,m)∈Z(k′,m′)

||x(k,m)||. (10)

The elements of xZ(k′,m′) are then used to form six two-element

sub-vectors given by x̆<a,b>Z(k′,m′) = [x
(a)

Z(k′,m′), x
(b)

Z(k′,m′)]
T , {a, b} ⊂

{p, vx, vy, vz}. Using (4), (6) can be rewritten as

x̆<a,b>Z(k′,m′) ≈ si(k,m)e−ωkτi q̆<a,b>i , (11)

where q̆<a,b>i is the vector consisting of the corresponding two el-
ements of qi. In (11), x̆<a,b>Z(k′,m′) is derived as a product of a source

DOA dependent vector q̆<a,b>i with a complex scalar. It is therefore
expected that the Hermitian angle between x̆<a,b>Z(k′,m′) and any refer-

ence vector r will be equal to the Hermitian angle between q̆<a,b>i

and r. In other words, if the reference vector r is arbitrarily fixed,
the Hermitian angles θ̆<a,b>Z(k′,m′) computed from x̆<a,b>Z(k′,m′) will be
uniquely determined by their dominant source DOAs.

Mathematically, the Hermitian angle between x̆<a,b>Z(k′,m′) and an
arbitrarily selected r can be computed, using (9), as

θ̆<a,b>Z(k′,m′) = cos−1

(∣∣∣∣∣ rH x̆<a,b>Z(k′,m′)

‖r‖‖x̆<a,b>Z(k′,m′)‖

∣∣∣∣∣
)
. (12)

To improve clustering resolution, a 6× 1 vector of Hermitian angles
can be constructed by considering every pair of sensor elements, i.e.,

ΘZ(k′,m′) =
[
θ̆<p,vx>
Z(k′,m′), θ̆

<p,vy>

Z(k′,m′), ..., θ̆
<vx,vy>

Z(k′,m′)

]T
. (13)

As discussed, ΘZ(k′,m′) depends only on the DOAs of the dominant
sources and thus can be used as a feature to cluster the LRSS zones.

3.3. Clustering and mask estimation

Given ΘZ(k′,m′), the partitioning of ΘZ(k′,m′) and hence the cor-
responding LRSS zones is performed in a multi-dimensional space.
Any one of the well-established data clustering algorithms [24, 25],
such as k-means [26] or fuzzy c-means (FCM) [27] may be used for
this purpose. In this work, we employ the FCM algorithm which
partitions the data into clusters with membership function that is in-
versely related to the distance of ΘZ(k′,m′) to the centroid of each
cluster. Therefore, defining i as the cluster index, the obtained mem-
bership functionMi,Z(k′,m′) would be a smooth function.

For FCM, the number of clusters/sources must be known a
priori. For an unknown number of clusters in practical scenar-
ios, cluster validation techniques can be used [23, 28, 29]. These
techniques assume that the maximum number of possible sources
Imax is known. The variable ΘZ(k′,m′) will then be clustered for
I = 2, · · · , Imax, where I is the number of clusters. After each
clustering, the cluster validity index will be computed and the I
which achieves the optimal cluster validation index will be taken
as the number of sources present. In this work, we assume that the
number of sources is known since the focus of this work is DOA
estimation.

3.4. DOA estimation

The membership function Mi,Z(k′,m′) obtained from FCM algo-
rithm is used as the mask for each source. Therefore, the covariance
for the ith source is estimated by

Ri =
∑

Z(k′,m′)∈Γ

Mi,Z(k′,m′)RZ(k′,m′). (14)

In (14), the obtained Ri is expected to contain only the ith source
signal with low distortion since only the LRSS zones are taken into
account. Since the TF points of the source signals are separated,
any single-source DOA estimation algorithms, such as velocity-
covariance based [5], maximum SRP estimator [6] or maximum
likelihood estimator [7] can be applied. In this work we employ
the MUSIC algorithm due to its high spatial resolution [18]. For a
single source, the MUSIC spatial spectrum is defined as

Ji(us) =
1

‖qHs UiU
H
i qs‖

, (15)

where qs = [1, uTs ]T with us = [cosψ cosφ, cosψ sinφ, sinψ]T

being the steering vector, and Ui is the matrix consisting of three
eigenvectors corresponding to the smallest eigenvalues of Ri. The
direction of the ith source is then estimated by

ûi = arg max
us

Ji(us), s.t. uTs us = 1. (16)

For different active sources, DOA estimation is performed using (14)
to (16) for each of the identified clusters.

446



0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

Reverberation time (sec)

R
M

S
A

E
 (

de
g)

 

 

Proposed, SNR = 15 dB

SSP based [20], 
SNR = 5 dB

Proposed, SNR = 5 dB

MUSIC, SNR = 15 dB

MUSIC, SNR = 5 dB

SSP based [20], 
SNR = 15 dB

Fig. 2. RMSAE for different reverberation time and SNR, when two sources
are present at φ1 = 110◦, ψ1 = −10◦ and φ2 = 165◦, ψ2 = 15◦.
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Fig. 3. RMSAE for different reverberation time and SNR, when three
sources are present at φ1 = 110◦, ψ1 = −10◦, φ2 = 165◦, ψ2 = 15◦ and
φ3 = 220◦, ψ3 = 20◦.

4. SIMULATION RESULTS

Simulations were conducted for a 6 m × 6 m × 4 m room with an
AVS located at [3 m, 3 m, 1.3 m]. Similar to [8], room impulse
responses were generated using [30]. The pressure element was set
as omni-directional and each of the vector-sensor elements was set
as bi-directional with orthogonal orientation. Both male and female
speech signals sampled at 16 kHz from the TIMIT database [31]
were used as source signals. The sources were placed 1.7 m away
from the sensor. White Gaussian noise at different signal-to-noise
ratios (SNRs) were added to each of the four channels. The DOAs
of the sources were estimated using 3 s block data in which the LRSS
zones are identified. The frame length of STFT was 1024 samples.
The TF-zone size was set to 62.5 Hz× 256 ms and this corresponds
to Kz = 4 and Mz = 4 with 50% overlap across frequency bins
and time frames. The coherence test threshold was set to Cthd =
0.75 and the arbitrary selected reference vector for Hermitian angle
computation was r = [1 + , 1 + ]T .

In this work we compare the proposed algorithm with two ex-
isting multi-source DOA estimation algorithms. The conventional
MUSIC algorithm [18] is used as baseline comparison in which the
covariance matrix is computed without LRSS zone detection and
clustering. The single-source point (SSP) based algorithm was also
implemented by detecting and clustering the single-source points in
TF plane [20]. It worth noting that the SSP based algorithm does
not have the ability to detect the low-reverberant TF points/zones
since the covariance matrix is obtained by averaging only across time
frames (See Sec. 3.1 for explanation). The accuracy of DOA estima-
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Fig. 4. Variation of RMSAE against angular distance between two active
sources for T60 = 300 ms and SNR = 15 dB.

tion is evaluated using angular error defined as the angle by which
û deviates from u [5, 7]. For the case of multiple sources, it can be
modified as e = 1

I

∑I
i=1 2 sin−1 (||ûi − ui||/2) . We then quan-

tify the performance across all the data blocks using the root-mean-
square angular error (RMSAE) defined as RMSAE =

√
E{e2}.

Figure 2 shows the variation of RMSAE against reverberation
time for different noise levels when two sources are simultaneously
active. The two sources are located at φ1 = 110◦, ψ1 = −10◦ and
φ2 = 165◦, ψ2 = 15◦. These results show that the performance
of the three algorithms degrade with increasing reverberation, as ex-
pected. While the MUSIC algorithm achieves an error of less than
5◦ when T60 = 150 ms and SNR = 15 dB, the performance de-
teriorates significantly with increasing reverberation and noise. The
SSP based algorithm achieves lower error than the MUSIC algorithm
since only single-source points are exploited for DOA estimation.
The proposed algorithm achieves the lowest error compared to the
other two algorithms. In addition, it is observed to be less sensi-
tive to reverberation. This is due to the fact that for the proposed
algorithm, only LRSS zones are identified which are less affected by
reverberation.

Figure 3 shows the DOA estimation results for three active
sources, where the third source is placed at φ3 = 220◦, ψ3 = 20◦.
In this figure, the results of MUSIC are not included since the MU-
SIC algorithm requires that the number of sources should be less
than the number of dipole elements in AVS. Similar to previous
simulation, the proposed algorithm achieves lower error than the
SSP algorithm. However, the performance reduces with increasing
reverberation since the number of LRSS zones is reduced.

Figure 4 illustrates the accuracy of the DOA estimation algo-
rithms for various angular distance between two active sources. It
can be observed that for the MUSIC algorithm, the error increases
with reducing angular distance. Although MUSIC is well-known
to achieve high resolution, its performance is degraded when only
one AVS is used in a reverberant and noisy environment. On the
other hand, the SSP based algorithm and the proposed algorithm
are generally less sensitive to the source positions since they clus-
ter the single-source TF points/zones before DOA estimation. The
proposed algorithm achieves lower error than the SSP algorithm due
to exploitation of LRSS zones.

5. CONCLUSION

We proposed a multi-source DOA estimation algorithm using a sin-
gle AVS. The proposed algorithm identifies the LRSS zones avail-
able in the TF plane of the sensor outputs. The LRSS zones are
then separated into clusters according to the sources for which the
Hermitian angle feature is utilized. DOA estimation is then applied
on each of these clusters. Simulation results show that the proposed
algorithm achieves better performance than the MUSIC and SSP-
based algorithms in a noisy and reverberant environment.
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