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ABSTRACT
The direction dependence of Head Related Transfer Functions
(HRTFs) forms the basis for HRTF-based Sound Source Local-
ization (SSL) algorithms. In this paper, we show how spectral
similarities of the HRTFs of different directions in the horizontal
plane influence performance of HRTF-based SSL algorithms; the
more similar the HRTFs of different angles to the HRTF of the target
angle, the worse the performance. However, we also show how the
microphone array geometry can assist in differentiating between
the HRTFs of the different angles, thereby improving performance
of HRTF-based SSL algorithms. Furthermore, to demonstrate the
analysis results, we show the impact of HRTFs similarities and
microphone array geometry on an exemplary HRTF-based SSL
algorithm, called MLSSL. This algorithm is well-suited for this pur-
pose as it allows to estimate the Direction-of-Arrival (DoA) of the
target sound using any number of microphones and any geometries
of the microphone array around the head.

Index Terms— Microphone array configuration, Sound source
localization, HRTFs, Direction-of-Arrival, Wireless microphone,
Hearing Aid Systems.

1. INTRODUCTION

Sound Source Localization (SSL) using a microphone array has been
studied in different applications, such as robotics [1, 2, 3], video con-
ferencing [4], and hearing aids [5]. Bio-inspired spatial cues, like In-
teraural Time Difference (ITD), Interaural Intensity Difference (IID)
and the monaural spectral cues in Head Related Transfer Functions
(HRTFs) [called Head Related Impulse Responses (HRIRs) in the
time domain] are often used for SSL when the microphone array is
located next to the ears1, such as in Hearing Aid Systems (HASs).

Acoustic shadowing effects of the head and torso of a HAS user
or a humanoid robot cause the HRTFs to depend on the target sound
Direction-of-Arrival (DoA) θ [6]. HRTF-based SSL algorithms use
this fact and often exploit a dictionary of HRTFs, labelled by their
corresponding θ, to estimate the target sound DoA by finding the
best HRTF match in the dictionary [1, 3].

The SSL scenario, which is considered in this paper, is shown in
Fig. 1. Because of recent advances in wireless technology for HASs,
the depicted scenario is of practical interest. The target signal s(n)
is transmitted through the acoustic channel hm(n) and is “polluted”
by environmental noise to generate the noisy signal rm(n) at micro-
phonem of the HAS. Moreover, we assume that the noise-free target

1While formally, an HRTF is defined to be “a specific individuals left or
right ear far-field frequency response, as measured from a specific point in
the free field to a specific point in the ear canal” [6], in this paper we use
the term HRTF to describe the frequency response from a target source to a
microphone of a hearing aid system.
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Fig. 1: SSL scenario for a HAS using a wireless microphone:
rm(n), s(n) and hm(n) are the noisy received sound, the clean tar-
get signal and the correspondent HRIR for microphone m, respec-
tively. s(n) is available at the HAS via wireless connection to the
wireless microphone. We aim at estimating θ in this scenario.

signal s(n) is also available at the HAS via a wireless connection.
We aim at estimating θ in this scenario.

In general, spectral similarities of the HRTFs and microphone
array geometries affect HRTF-based SSL performance. The spec-
tral similarities of the HRTFs in the dictionary may complicate find-
ing the best candidate in the dictionary and reduce the SSL perfor-
mance. However, the microphone array geometry may assist to im-
prove the SSL performance. Different microphone array geometries
impose different amounts of computation and wireless transmission
overhead; for example, generally, two different microphone array
configurations are conceivable for a HAS: a) a binaural configura-
tion which allows usage of microphones from wirelessly connected
hearing aids, but impose wireless transmission overhead, and b) a
monaural configuration, which is restricted to use microphones of
one hearing aid only, but which does not impose any transmission
overhead. The goal of this paper is to compare different microphone
array configurations in terms of performance for HRTF-based SSL.
Specifically, we wish to study to which extent the need for wireless
data transmission in binaural configuration is justified in terms of
performance improvements over a monaural configuration.

To demonstrate our investigation results about HRTFs spectral
similarities and microphone array geometry, we consider an exem-
plary SSL algorithm, called Maximum Likelihood Sound Source Lo-
calization (MLSSL) [7], that uses the noisy microphone signals, the
noise-free target signal and a maximum likelihood (ML) strategy to
find the best HRTF match in the dictionary to estimate θ. MLSSL
is well-suited for the purpose of this paper since it is scalable to any
number of microphones and any array geometry around the head.
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2. SIGNAL MODEL AND MLSSL

In this section, we briefly review the MLSSL algorithm [7]. Regard-
ing Fig. 1, for microphone m of the HAS, we can write:

rm(n) = s(n) ∗ hm(n) + vm(n), m = 1, · · · ,M, (1)

where rm(n), s(n), hm(n) and vm(n) are the noisy microphone
signal, the noise-free target signal, the HRIR between the target
source and microphone m, and the noise signal, respectively. M ≥
1 is the number of available HAS microphones, n is the discrete time
index, and ∗ represents the convolution operator. It can be shown
that Eq. (1) can be approximated in the short-time Fourier-transform
(STFT) domain as [7, 8]:

Rm(l, k) = S(l, k)Hm(k) + Vm(l, k), (2)

where Rm(l, k), S(l, k) and Vm(l, k) are STFT coefficients of the
noisy microphone signal, target signal and noise signal for the mth

microphone, respectively. Hm(k) is the corresponding HRTF, and l
and k are frame and frequency bin indices, respectively.

Collecting expressions for the received microphone signals in a
column vector leads to:

R(l, k) = S(l, k)H(k) + V (l, k), (3)

where

R(l, k) = [R1(l, k), R2(l, k), · · · , RM (l, k)]T, (4)

H(k) = [H1(k), H2(k), · · · , HM (k)]T, (5)

V (l, k) = [V1(l, k), V2(l, k), · · · , VM (l, k)]T. (6)

Assume we possess a dictionary H = {H1,H2, · · · ,HI} of
I sets of HRTFs labelled by their corresponding θs, then MLSSL
aims at finding the Hi in H that fits best the observed signals, and
in this way estimate the target θ.

Let us assume that V (l, k) in Eq. (3) is a zero-mean, circularly-
symmetric complex Gaussian random vector, i.e. V (l, k) ∼
N (0,CV (l, k)), where CV (l, k) is the inter-microphone noise
covariance matrix. Since we assume the noise-free S(l, k) is avail-
able at the HAS, it is considered as known and deterministic. H(k)
is also considered as deterministic but unknown (H ∈ H). There-
fore, R(l, k) in Eq. (3) obeys a Gaussian distribution according
to:

R(l, k) ∼ N (S(l, k)H(k),CV (l, k)). (7)
Because S(l, k) is available at the HAS, it is easy to determine the
time-frequency regions in the noisy microphones signals where the
target speech is essentially absent, and therefore, adaptively estimate
CV (l, k) over the frames where the noise is dominant. Moreover, for
mathematical convenience, the noisy observations are considered to
be independent over time and frequencies. Therefore, the likelihood
function of Hi ∈ H at frame l, regarding the received signals is
given by:

fl(R, S;Hi) =

l∏
j=l−D+1

K∏
k=1

1

πM |CV (j, k)|
e{−ZH

i (j,k)C−1
V

(j,k)Zi(j,k)}, (8)

where Zi(j, k) = R(j, k) − S(j, k)Hi(k), and |.| and H denotes
the matrix determinant and Hermitian transpose operator, respec-
tively. D and K are the number of frames and frequency indices,
respectively, used for calculating fl . We assume the target sound
source location is fixed during the D frames. The corresponding
log-likelihood function is:
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90 Deg. 270 Deg.
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Fig. 2: Acoustic setup. In an anechoic chamber, 72 loudspeakers are
placed on a circle with radius of 1.5 m in a horizontal plane centered
at the HATS. Possible microphones locations are represented by ×
behind the HATS’ pinnae.

Ll(Hi) = −MDK log π −
l∑

j=l−D+1

K∑
k=1

log |CV (j, k)| −

l∑
j=l−D+1

K∑
k=1

ZH
i (j, k)C

−1
V (j, k)Zi(j, k), (9)

leading to the maximum likelihood estimation of the HRTF:

HML = argmax
Hi∈H

Ll(Hi) (10)

from which the corresponding DoA estimate θ̂ follows. For imple-
mentation of Eq. (10), we use an exhaustive search inH.

3. PERFORMANCE ANALYSIS

3.1. Acoustic setup and experiment configurations

For investigating effects of different factors on SSL algorithm per-
formance, an anechoic chamber environment is considered (Fig. 2).
The target source can be located at one of 72 uniformly spaced posi-
tions, i.e. with 5 degrees resolution, on a horizontal circle with radius
1.5 m centered at a head-and-torso simulator (HATS). Behind-The-
Ear (BTE) hearing aids are mounted behind each ear of the HATS.
The microphone signals of each hearing aid can be wirelessly ex-
changed such that a maximum of four microphones can be used
to perform SSL. We assume this exchange to be instantaneous and
error-free. The distance between front and rear microphones in each
hearing aid is 12 mm, and the sampling frequency of the microphone
signals is 20 kHz. The STFT uses a frame length of 2048 samples,
and a decimation factor of 1024 samples. We use a number of D = 2
frames and the dictionaryH consists of I = 72 sets of microphones
HRTFs, measured from each loudspeaker to the microphones. The
target speech signal is a 10-seconds sample of the ISTS V1.0 [9]
which is composed of 21 female voices in 6 different languages.

To generate a realistic and difficult situation, we approximate a
cylindrically isotropic large-crowd noise field [10], which is simu-
lated by a number of speech sources that are uniformly spaced on
the considered circle. The large-crowd speech signals are from the
TSP speech database [11] which consists of different male and fe-
male voices. The power of the noise sources is constant for all θs.
Therefore, the acoustic shadowing of the HATS causes the effective
signal-to-noise-ratios (SNRs) observed at each microphone to be a
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Fig. 3: Log-spectral distances of the HRTFs of θs for the front mi-
crophone of the left hearing aid.

function of target direction θ. For this reason, the simulation SNRs
are expressed relative to the Left-Front microphone and θ = 0◦.

To quantify SSL performance, we define the percentage of the
DoA correct detection and the DoA estimation mean absolute error
(MAE) as following. Let Qθ denote the number of frames for which
θ̂ = θ. The percentage of the DoA correct detections is:

Pθ =
Qθ
L
× 100, (11)

where L is the total frames of the target signal. Furthermore, the
mean absolute error (MAE) of the DoA estimation is given by:

σθ̂ =
1

L

L∑
j=1

|θ − θ̂j |, (12)

where θ̂j is the estimated DoA for the jth frame of the signal.

3.2. HRTF similarities
In this section, we study spectral similarities of HRTFs to be able
to identify general challenges that any HRTF-based SSL algorithm
faces. Intuitively, we expect that HRTF similarities reduce perfor-
mance of HRTF-based SSL algorithms. To quantify the similarity
between two HRTFs Hi and Hj inH, we use the Log-Spectral Dis-
tance (LSD) measure [12]:

LSD(Hi, Hj) =

√√√√ 1

K

K∑
k=1

(
20 log10

|Hi(k)|
|Hj(k)|

)2

, (13)

where |.| denotes the absolute value, and K is the number of fre-
quency bin indices.

Fig. 3 depicts the LSDs of pairs of HRTFs in H for the front
microphone of the left hearing aid. As can be seen, for θs which
are on the left side of the head (θ ∈ [0◦; 180◦]), i.e. the same side
of the hearing aid, their corresponding HRTFs are more similar to
each other than to the HRTFs of θs of the other side. This fact helps
HRTF-based SSL algorithms to decrease right-left confusions. On
the other hand, HRTFs corresponding to angles which are almost
symmetric relative to the axis between the left and right ears have
similar HRTFs, represented by almost two anti-diagonal blue lines
in Fig. 3. These two anti-diagonal blue lines represent the projec-
tion of the 3D cone-of-confusion [13] onto the 2D horizontal plane.

Left Mic.

Right Mic.

Sound Wave

Fig. 4: Left-Right microphone axis.

Front Mic.

Rear Mic.

Sound Wave

Fig. 5: Front-Rear microphone axis.

These similarities cause front-back confusions, which result in larger
estimation errors for the θs in the front or back of the HATS than the
left or right sides θs.

3.3. Microphone array configurations
To analyze the impact of microphone array geometry, let us first fo-
cus on the two-microphone (M = 2) situation. In a HAS context,
two configurations are of interest: Left-Right axis (Fig. 4) and Front-
Rear axis (Fig. 5). Left-Right axis is a binaural configuration and
uses the front microphones of the left and right hearing aids. On
the other hand, Front-Rear axis is a monaural configuration and uses
the front and rear microphone of a single hearing aid. Without loss
of generality, we assume the Front-Rear microphone axis is placed
on the left ear. The Left-Right axis needs wireless communication
between the hearing aids while the Front-Rear axis does not.

To explain the influence of different configurations on HRTF-
based SSL, we analyze the inter-microphone Time Differences of
Arrival (TDoA). Since HRTFs can be treated as a minimum phase
FIR filter [6], inter-microphone TDoAs are “encoded” in the HRTFs
and implicitly affect HRTF-based SSL. To simplify the analysis, we
consider a free field and far field situation (ignoring the head and
torso filtering effects and assuming a planar wavefront). Let dLR
and dFR denote the distance between left and right microphones
(Fig. 4), and front and rear microphones (Fig. 5), respectively, and
‘c’ the sound velocity. The inter-microphone TDoAs for the Left-
Right and Front-Rear microphone axes are given by:

τLR =
dLR sin θ

c
, τFR =

dFR cos θ

c
, respectively.

The different microphone axes provide different sensitivities to
changes in θ; the higher the change in TDoA with respect to the
change in θ, the better SSL performance. To measure the sensitivity
of TDoA to θ changes, the derivatives of τLR and τFR with respect
to θ are shown in Fig. 6. Clearly, the Front-Rear microphone axis is
more sensitive to θ changes when θ is around 90◦ and 270◦ while
the Left-Right microphone axis is more sensitive to the changes of
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Fig. 7: The MLSSL performance using one and two microphones
with different axes at 0 dB SNR.

θ when θ is around 0◦ and 180◦. Moreover, the sensitivity to the
DoA changes is a function of the microphone distance; the larger the
distance, the higher the sensitivity to θ changes.

Regarding Fig. 1, increasing the number of microphones to
M = 3 enables us to take advantage of both the Left-Right axis and
the Front-Rear axis at the cost of computation and wireless trans-
mission overhead. Increasing M further to M = 4 will add another
Front-Rear axis in the horizontal plane. However, we would not
expect this extra Front-Rear axis to provide significant information
for SSL in a horizontal plane because the plane is already spanned
by the existing microphone axes.

3.4. MLSSL performance
To validate and demonstrate the above analysis, we show the perfor-
mance of the MLSSL algorithm. Fig. 7 shows Pθ and σθ̂ using one
and two microphones signals in different configurations as a function
of θ at 0 dB reference SNR. As can be seen in Fig. 7a, Pθ generally
falls when the target is located at the sides of the HATS (i.e. θ ≈ 90◦

and θ ≈ 270◦), compared with when the target is in the front (θ ≈ 0)
or behind (θ ≈ 180◦). This is because the HRTFs around 90◦ and
270◦ are locally more similar than the HRTFs around 0◦ and 180◦

(Sec. 3.2). Moreover, as can be seen in Fig. 7b, σθ̂ shows different
and sometimes opposite behaviour, specifically, for MLSSL using
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Fig. 8: The MLSSL performance in terms of logarithm of averaged
σθ̂ over considered θs for different number of microphones as a func-
tion of reference SNR.

one microphone. This behaviour is because of front-back confusions
which cause larger estimation errors for the θs in the front or back of
the HATS than the left or right sides θs (Sec. 3.2).

Fig. 7 shows that increasing the number of microphones gener-
ally improves the performance. However, as expected, the config-
uration of the microphones also affect MLSSL performance. From
Fig. 7a, it is clear that MLSSL (M = 1) has lower Pθ for θs around
90◦ and 270◦. ForM = 2, the Front-Rear configuration is preferred
(over the Left-Right) because the Front-Rear axis is more sensitive
to changes in θ at these angles (Sec. 3.3, Fig. 6).

Fig. 8 shows the MLSSL performance in terms of the logarithm
of the averaged σθ̂ over the 72 θs for different number of micro-
phones as a function of reference SNR. The performance difference
between M = 1 and M = 2 of the MLSSL is significant due to the
fact that two microphones can form a new microphone axis in the
plane. It is clear that for M = 2 the Left-Right axis, which requires
wireless communication capabilities, does not offer any advantage
over the Front-Rear axis. Increasing the number of microphones to
M = 3 or M = 4, improve the performance of the MLSSL at
the cost of higher computation and communication overhead. The
performance difference between M = 2 and M = 3 is also rela-
tively significant, since three microphones configuration allows the
MLSSL to make use of both Right-Left and Front-Rear axes via the
wireless connection. The performance differences between using
M = 3 and M = 4 are relatively small since the planar dimensions
are already spanned when M = 3.

4. CONCLUSION
In this paper, we analyzed the performance of HRTF-based SSL al-
gorithms in terms of spectral similarities between HRTFs and mi-
crophone array geometry. We showed that due to similarities of
different HRTFs, the performance of HRTF-based SSL algorithms
depends on the DoA of the target signal. Moreover, we showed
that even though increasing the number of microphones in the mi-
crophone array improves SSL performance, the geometry of the mi-
crophone array plays a key role in improving the performance. For
example, a binaural wireless configuration does not necessarily im-
prove the SSL performance compared with a monaural configura-
tion. In this paper, we only considered target locations in the hori-
zontal plane and BTE hearing aids; future research includes consid-
ering elevation and range in addition to the azimuth. Furthermore,
considering other types of hearing aids than BTE will help comple-
ment the investigation.
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