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ABSTRACT 
 

Music auto-tagging has been an active research topic as it 

learns the relationship between the content of audio tracks 

and semantic tags such that users can query by both tags and 

audio segments without being troubled by the cold start 

problem. In this paper, we propose a new trigger-based 

context model to refine the existing content model based 

auto-tagging systems. The trigger based context model 

improves accruacy of weakly labeled tags in “Genre”, “Solo” 

and “Usage” by 10.63%, 10% and 26.43%  respectively, 

which are usually poorly modeled due to lack of data in the 

content model based systems. Experiment results indicate 

that a combination of the content and context models 

outperforms the content based only auto-tagging system and 

the baseline Turnbull’s MixHier model by 0.74% and 2.64% 

in average precision rate respectively.  
 

Index Terms—Music auto-tagging improvement, 

context model,  trigger feature selection, maximum entropy
 
 

 

1. INTRODUCTION 
 

With the continuous increasing scale of music volume and 

the well-known cold start problem (tracks without manual 

annotations are inaccessible), music auto-tagging has 

become a popular topic in MIR research to bridge the 

semantic gap between low-level computable audio features 

and high-level human perceptible labels [1]. Music auto-

tagging is defined as a multi-label classification task which 

aims to describe the semantic content of given tracks by 

assigning related tags to them automatically. Considering 

diverse musical tags including emotion, genre, instrument 

and vocals, well-trained music auto-tagger can be used 

towards not only offline music collections indexing but also 

online music discovery. 

A typical auto-tagging system employs a content-based 

method, which includes two parts: a set of acoustic features 

extracted from audio signals and statistic models trained 

independently for different tags. In such a system, manual 

annotated training data is learnt by statistic models so that 

audio feature space can be transformed into semantic space 

(normally with hundreds of tags in it). Then each test track 
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is automatically labeled with a subset of best suitable tags 

by comparing extracted audio features to corresponding tag 

models. The output probabilities of testing tracks are called 

semantic multinomials (SMNs) [2].  

It is well known that the quality and quantity of the 

training data greatly affects the performance of auto-tagging 

system. It is evident that the more the diversified tags exist, 

the higher possibilities that some of them are under 

modelled due to limited presence in training sets [3]. These 

so-called “weakly labeled tags” suffer a lot from the 

imbalance problem especially in systems where tags are 

modelled independently. Although learning from imbalance 

data has been deeply studied for binary and multi-

classification tasks (using approaches such as data 

preprocessing and cost sensitive classification), there are 

little approaches dealing with such imbalance problem in 

music auto-tagging [4-6].  

Variable feature sets and tag-level Gaussian mixture 

models are used to construct the basic content based auto-

tagging system in our previous work [7]. In this paper we 

endeavor to solve the problem of “weakly labeled tags” by 

improving the existing auto-tagging systems in two aspects: 

the semantic context analysis and the trigger-based context 

modeling. The context analysis captures aspects beyond 

pure content from audio signals and different levels of 

correlations between tags are then apprehended by trigger-

based context models with maximum entropy approach. The 

maximum entropy approach has been widely used in natural 

language processing (NLP), including part of speech tagging, 

parse selection, sentence boundary detection and ambiguity 

resolution [8-9]. It has also been applied to other fields as 

computer vision [10] and document annotation in the 

biomedical domain [11] and performs with high accuracy in 

recent years.  

The rest of the paper is organized as below. Section 2 

gives an overview of context based auto-tagging refinement. 

Tag correlation and trigger features are discussed in Section 

3. Section 4 presents the trigger-based context models and 

the probability refinement criterion followed by the 

performance evaluation and comparison in Section 5.  
 

2. SYSTEM OVERVIEW 
 

The structure of the proposed two-stage music auto-tagging 

system is illustrated in Fig.1. In stage 1, the content model is 

obtained by training Gaussian mixture models (GMMs) with 
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variable feature sets while in stage 2 tag correlations are 

identified to establish the context model for each tag via 

maximum entropy (ME) approach. In a word stage 2 

essentially refines the imperfect output tag probabilities of 

the Stage 1. The second stage is the focus of this paper 

while the work in the first stage has been reported in [7]. To 

facilitate the quantitative evaluation, the experiments are 

conducted on Computer Audio Lab 500 (CAL500) [2]. 
 

3. TRIGGER FEATURES   

To extract the correlation information from the manually 

labeled semantic tags of the training dataset, we borrow the 

idea of trigger pair from the language processing field [12] 

as the information bearing element. This section briefs the 

measure of tag correlation and trigger features selection 

before constructing the contextual model. 
 

3.1. Tags Correlation  
 

There are several similarity measures available for 

extracting tag correlations such as matching similarity, 

overlap similarity, cosine similarity, Jaccard similarity, Dice 

coefficient and mutual information [13]. In this work the 

projected Dice coefficient is employed due to its simplicity. 

𝑊 = {𝑤𝑖}, 𝑖 = 1,2, … , |𝑊|  is the tag vocabulary, where 

each tag 𝑤𝑖  represents a class and |𝑊| is total number of 

tags. If tag 𝑤𝑖  is strongly correlated with another tag 

𝑤𝑘 ∈ 𝑊, then (𝑤𝑘 → 𝑤𝑖) is considered as a trigger pair. 𝑤𝑘 

is the trigger tag and  𝑤𝑖  is the triggered tag. If tag 𝑤𝑘  is 

annotated to a track, it will trigger tag 𝑤𝑖  and raise the 

probability 𝑤𝑖  given the track. The correlation of trigger pair 

(𝑤𝑘 → 𝑤𝑖) is computed as 

𝐶𝑖𝑘 =
2𝑁𝑤𝑖∩𝑤𝑘

𝑁𝑤𝑖
+𝑁𝑤𝑘

                                (1) 

where 𝑁𝑤𝑖
 represents the number of tracks positive 

associated with tag 𝑤𝑖 , and 𝑁𝑤𝑖∩𝑤𝑘
 is the number of tracks 

annotated by both tag 𝑤𝑖  and 𝑤𝑘. The correlation value C𝑖𝑘 

ranges between 0 and 1. C𝑖𝑘 > 0  if there is a positive 

correlation. The higher C𝑖𝑘, the stronger correlation between 

𝑤𝑖  and 𝑤𝑘. 
 

3.2. Trigger Feature Selection  
 

All the tags triggering tag 𝑤𝑖  form a set of trigger features of 

tag 𝑤𝑖  in the maximum entropy approach. An example of 

typical trigger pair (with strong correlation) in music auto-

tagging is “falsetto → high pitched”. The volume of pairs 

is too large even if we restrict the trigger pair to two single 

tags. Furthermore the trigger pairs with low correlation have 

limited contributions to the contextual modeling actually. In 

contrast they dilute other strong tag correlations by 

introducing noise. Therefore trigger features are selected by 

removing trigger pairs whose correlation values are below 

the threshold 𝜃.  

The selected trigger pair (𝑤𝑘 → 𝑤𝑖) is reformulated as a 

constraint in maximum entropy approach in equation (2) 

𝑓(𝑤𝑘 , 𝑤𝑖) = {
1,           𝑖𝑓 𝐶𝑖𝑘 > 𝜃 
 0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                (2) 

where  C𝑖𝑘  represents the correlation of trigger pair (𝑤𝑘 →
𝑤𝑖) and  𝜃 is a threshold and set empirically to eliminate the 

low correlation tags . For tag 𝑤𝑖 , the corresponding trigger 

features 𝐶𝑖𝑘  are ranked in a descending order. Top- 𝐾 

features form the trigger feature vector: 𝑋𝑤𝑖
= [𝑤1 , 𝑤2, … ,

𝑤𝑘 , … ], 𝑤𝑘 ∈ 𝑊, 𝑘 = 1,2, … , 𝐾 once 𝜃 is set. Table 1 shows 

some examples of trigger features when 𝐾 = 5 for several 

“weakly labelled tags” in CAL500. 
 

4. CONTEXT MODELING 
 

The main advantage of maximum entropy (ME) approach 

lies in its flexibility, which allows stochastic rule systems to 

be augmented with rich representations [14]. In this section 

the context models with ME principle are established. The 

trained context model is applied to refine the probabilities 

from the first stage of auto-tagging. 
 

4.1. Construction of context models 
 

Assuming that each context model is a conditional 

probability distribution 𝑝(𝑦|𝑥), 𝑦 ∈ 𝑊  is the triggered tag 

whose probability needs to be refined and  𝑥 ∈ 𝑋y ⊆ 𝑅𝑛 is 

the trigger feature (tag) obtained in Section 3, where 

𝑋y = [𝑤1, 𝑤2, … , 𝑤𝑘 , … ] ,  𝑤𝑘 ∈ 𝑊 . The goal of context 

modeling is to set up a robust model 𝑝(𝑦|𝑥)  that best 

accounts for the training data, using the partial evidence 

from the trigger features. For triggered tag 𝑦  and the 

corresponding trigger features in 𝑋y , the training set is 

 𝒟 = 𝒟𝑦 ∩ 𝒟�̅� ,where 𝒟𝑦 = {(𝑥1, 𝑦), (𝑥2, 𝑦), … , (𝑥𝑖 , 𝑦), … } 

includes the total tracks labelled by the triggered tag 𝑦 and 

𝒟�̅�  is the rest of tracks which are not labelled by tag 𝑦. 
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Figure 1. A schematic diagram of the proposed two-stage music 

auto-tagging system. 

Category 
Triggered Tag 

(𝑦) 

Trigger Tags(Features) 

(𝑋y = [𝑤1, 𝑤2, … , 𝑤𝑘, … ]) 

Genre 

country 
bluegrass, country(best), acoustic 

guitar, not arousing, folk 

hard rock 
angry, aggressive, metal hard rock 

(best), screaming, not pleasant 

Usage 

at a party 
very danceable, exciting, arousing, 

catchy, fast tempo 

going to sleep 
calming, tender, laid back, not heavy 

beat, not fast tempo 

Solo 

Piano 
bebop, jazz, violin, cool jazz,  

touching 

acoustic guitar 
falsetto, sleeping, bluegrass, soft 

rock(best), not recorded 
 

Table 1. TOP-5 trigger features of some “weakly labelled tags” 
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The way to combine trigger features is to “weight” the 

features in a log-linear or exponential model as a set of 

constrains [9]: 

𝑝(𝑦|𝑥) =
1

𝑍(𝑥)
𝑒𝑥𝑝 [∑ 𝜆𝑘𝑓𝑘(𝑥, 𝑦)𝐾

𝑘=1 ]             (3) 

𝑍(𝑥) = ∑ 𝑒𝑥𝑝 [∑ 𝜆𝑘𝑓𝑘(𝑥, 𝑦)𝐾
𝑘=1 ]𝑦                (4) 

where 𝑝(𝑦|𝑥) is the conditional probability of predicting an 

triggered tag y given the seen trigger feature 𝑥, and  𝑓𝑘(𝑥, 𝑦) 

is the 𝑘𝑡ℎ  constraint function that maps the trigger pair 

(𝑥 → 𝑦 ) to the binary contextual predication, defined by 

equation (2).  𝜆𝑘  is the weight. 𝐾  is the total number of 

constraint functions and 𝑍(𝑥) is a normalization factor that 

ensures ∑ 𝑝(𝑦|𝑥) = 1𝑦 .  

In the conditional maximum entropy framework, the 

optimal solution 𝑝∗(𝑦|𝑥) is the most uncertain distribution 

that satisfies 𝐾 constrains over feature expectations: 

𝑝∗(𝑦|𝑥) =  𝐻(𝑝)𝑝∈𝒞1

𝑚𝑎𝑥                         (5) 

𝐻(𝑝) = − ∑ 𝑝(𝑥)𝑥,𝑦 𝑝(𝑦|𝑥)𝑙𝑜𝑔𝑝(𝑦|𝑥)            (6) 

𝒞1 ≡ {𝑝|𝐸𝑝(𝑓𝑘) = 𝐸𝑝(𝑓𝑘), 𝑘 = 1,2, … , 𝐾}          (7) 

𝐸𝑝(𝑓𝑘) = ∑ 𝑝(𝑥, 𝑦)𝑓𝑘(𝑥, 𝑦)𝑥,𝑦                     (8) 

𝐸𝑝(𝑓𝑘) = ∑ 𝑝(𝑥)𝑝(𝑦|𝑥)𝑓𝑘(𝑥, 𝑦)𝑥,𝑦                 (9) 

where 𝐻(𝑝) denotes the conditional entropy and 𝐸𝑝(𝑓𝑘) is 

the expectation of 𝑓𝑘  while 𝐸𝑝(𝑓𝑘)  is the observed 

expectation of 𝑓𝑘 . 𝑝(𝑥, 𝑦) = (𝑣(𝑥, 𝑦))/𝑁𝒟  is the empirical 

joint probability of trigger pairs and 𝑝(𝑥) = (𝑣(𝑥))/𝑁𝒟  is 

the empirical marginal probability distribution of the input 

triggers and 𝑁𝒟  is the total number of trigger pairs in the 

training set 𝒟. 𝑣(𝑥, 𝑦) and 𝑣(𝑥) are the occurrence number 

of (𝑥 → 𝑦) and 𝑥 respectively. 
 

4.2. Parameter Estimation 
 

Given a ME model with 𝐾  constraints, the weights 𝜆 =
[𝜆0, 𝜆1, 𝜆2, … , 𝜆𝑘, … ] for all trigger features can be obtained 

by maximum likelihood estimation for a best fit given the 

dataset. The parameter estimation problem then could be 

translated into an optimization problem as follows. 

𝑝∗(𝑦|𝑥) =  𝐿(𝑝)𝑝∈𝒞2

𝑚𝑖𝑛                            (10) 

𝐿(𝑝) = ∑ 𝑝(𝑥, 𝑦)𝑥,𝑦 𝑙𝑜𝑔𝑝(𝑦|𝑥)                                   

= −𝐻(𝑝) + ∑ 𝜆𝑘(𝐸𝑝(𝑓𝑘)−𝐸𝑝(𝑓𝑘))𝐾
𝑘=1        (11) 

𝒞2 ≡ {𝑝|𝑝(𝑦|𝑥) =
𝑒𝑥𝑝 [∑ 𝜆𝑘𝑓𝑘(𝑥,𝑦)𝐾

𝑘=1 ]

∑ 𝑒𝑥𝑝 [∑ 𝜆𝑘𝑓𝑘(𝑥,𝑦)𝐾
𝑘=1 ]𝑦

}          (12) 

where 𝐿(𝑝) is the conditional log likelihood of the training 

set 𝒟  and 𝑝∗(𝑦|𝑥)  is the optimal probability distribution 

according to the maximum likelihood criterion. It is 

equivalent to maximum entropy parameter estimation over 

the set of consistent models [9] as indicated in equation (13) 

𝑝∗(𝑦|𝑥) =  𝐿(𝑝) =  𝐻(𝑝)𝑝∈𝒞1

𝑚𝑎𝑥
𝑝∈𝒞2

𝑚𝑖𝑛                (13) 

It is   suggested in [14] that Limited-Memory BFGS (L-

BFGS) is the most effective parameter estimation method 

for iterative refinement of maximum entropy (ME) models, 

much better than Generalized Iterative Scaling (GIS) and 

Improved Iterative Scaling (IIS). Hence L-BFGS algorithm 

is employed in this work. 

 

4.3. Probability Refinement by the Context models 
 

To keep consistent with the baseline system in [7], 𝑃𝑞 =

{𝑝𝑞(𝑖)}, 𝑖 = 1,2, … , |𝑊| is the quantized probability of the 

first stage content based auto-tagging, ranging between 0 

and 1. The trigger based context models are used to refine 

the output probabilities 𝑃𝑞  of those “weakly labelled tags”, 

which are identified via TF-IDF scores 𝑆𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖 , 𝑠𝑗). TF-

IDF scores are calculated as a combination of the frequency 

𝑑𝑓𝑤𝑖
 of tag 𝑤𝑖  and its strength 𝑡𝑓𝑤𝑖𝑠𝑗

 over track 𝑠𝑗 as shown 

in equation (14).  

𝑆𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖 , 𝑠𝑗) = (1 + 𝑙𝑜𝑔 (𝑡𝑓𝑤𝑖𝑠𝑗
))(𝑙𝑜𝑔

𝑛

𝑑𝑓𝑤𝑖

)       (14) 

𝑆𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖) is then denoted as the average of 

𝑆𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖 , 𝑠𝑗)  over all tracks annotated by tag 𝑤𝑖 . It is 

argued that tag 𝑤𝑖   has a low 𝑑𝑓𝑤𝑖
 but a high tag probability 

𝑡𝑓𝑤𝑖𝑠𝑗
 if few tracks are annotated by tag 𝑤𝑖  . So the score 

𝑆𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖 , 𝑠𝑗)  is relatively high. Those tags are often 

sparsely distributed and crucial to the context modeling. A 

threshold 𝛽  is set for all tags. If 𝑆𝑇𝐹−𝐼𝐷𝐹(𝑤𝑖) ≥  𝛽 , 𝑤𝑖  is 

identified as a weakly labelled tag. Fewer weakly labelled 

tags are found in “Emotion” and “Song” than other 

categories. 
 

5. EXPERIMENTS AND RESULTS 
 

The data set employed in this work is the CAL500, which 

includes 500 tracks and each is represented by 174 “musi-

cally relevant” semantic tags spanning six semantic catego-

ries [2]. The data set of 450 tracks for training content mod-

el is used for trigger-based context model buildup in a fash-

ion of 10 fold cross validation, in which 50 of 450 tracks are 

randomly selected test sets for context modeling. Two set of 

experiments are conducted to evaluate the efficiency of 

context models. One is to evaluate the trigger accuracy of 

the context models and the other is to compare its perfor-

mance with the previous system based on the content mod-

els only [7] and referred models in [2]. 

For a triggered tag y, the trigger features given a track 

is 𝑋y(𝑠𝑗) = [𝑤1(𝑠𝑗), 𝑤2(𝑠𝑗), … , 𝑤𝑘(𝑠𝑗), … ]. 𝑠𝑗  is the 𝑗𝑡ℎ  test 

track and 𝑤𝑘(𝑠𝑗)  is the 𝑘𝑡ℎ  trigger feature given track 𝑠𝑗 . 

The trigger probability 𝑝(𝑦|𝑤𝑘(𝑠𝑗)) for each trigger pair 

(𝑤𝑘(𝑠𝑗) → 𝑦) can be obtained from the optimal probability 

distribution 𝑝∗(𝑦|𝑥), 𝑥 ∈ 𝑋y.The context probability of tag 

𝑦 is defined as: 

𝑝(𝑦|𝑋y(𝑠𝑗)) = ∏ 𝑝(𝑦|𝑤𝑘(𝑠𝑗))𝐾
𝑘=1                  (15) 

The trigger accuracy rate of each context model is 

defined as: 

𝑅𝑎𝑡𝑒𝑀𝐸 = 𝑁𝑐𝑜−𝑡𝑟𝑖 𝑁𝑡𝑒𝑠𝑡⁄                         (16) 

where 𝑁𝑐𝑜−𝑡𝑟𝑖  is the number of tracks in which tag 𝑦  is 

“correctly” triggered by the trigger features. 𝑁𝑡𝑒𝑠𝑡  is the total 

number of tracks in the test set.  If the context probability 

𝑝(𝑦|𝑋𝑦(𝑠𝑗)) ≥ 0.5 and the softAnnotation of 𝑦 given track 

𝑠𝑗  ≥ 0.5 , the trigger is successful.  

436



Table 2 shows the average precision rate of the 

proposed context models for each tag category with 

different sizes of trigger features invovled. The accuracy of 

the contextual model is around 90% for all the categories, 

implying that applying  ME approach to obtain the pattern 

of contextual relationships is in a sense of feasibility. It is 

also note that increasing of the size of trigger feature vector 

does not always means a lift in the average accuracy rate, 

e.g. in ‘song’ category. Therefore it is preferable to find the 

suitable K according to the selected threshold 𝜃  for each 

category before establishing the context models as 

mentioned in Section 3.2. Tags in “Emotion” and “Song” 

categories acquire a smaller size of trigger features but give 

higher accuracy comparing to other four categories. It could 

be explained by the fact that tags in “Emotion” and “Song” 

are more correlated while tags in the other categories are 

more independent [13]. Overall the average precision rate of 

the context model could be enhanced by trigger feature 

selection by 5.83% or so . 

2
nd

 experiment is to evaluate the performance of the 

proposed auto-tagging system with and without trigger-

based probability refinement in terms of three standard 

information retrieval metrics: average per tag precision 

(𝑀𝑒𝑎𝑛_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛), average per tag recall (𝑀𝑒𝑎𝑛_𝑅𝑒𝑐𝑎𝑙𝑙) 
and F-score: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤𝑖) = 𝑁𝑐𝑜−𝑎𝑛𝑛𝑜 𝑁𝑚𝑜𝑑𝑒𝑙⁄            (17) 

𝑟𝑒𝑐𝑎𝑙𝑙(𝑤𝑖) = 𝑁𝑐𝑜−𝑎𝑛𝑛𝑜 𝑁𝑎𝑛𝑛𝑜⁄                (18) 

𝑀𝑒𝑎𝑛_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤𝑖)
|𝑊|
𝑖=1          (19) 

𝑀𝑒𝑎𝑛_𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑤𝑖)
|𝑊|
𝑖=1              (20) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑀𝑒𝑎𝑛_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑀𝑒𝑎𝑛_𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑒𝑎𝑛_𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑀𝑒𝑎𝑛_𝑅𝑒𝑐𝑎𝑙𝑙
        (21) 

where 𝑁𝑐𝑜−𝑎𝑛𝑛𝑜 is the number of tracks for which tag 𝑤𝑖  is 

“correctly” annotated by the models (namely GMM(VFS) 

and GMM+ME, before and after adding trigger-based 

context refinement respectively). 𝑁𝑚𝑜𝑑𝑒𝑙  is the number of all 

tracks annotated with tag 𝑤𝑖  by the model and 𝑁𝑎𝑛𝑛𝑜 is the 

number of tracks being annotated with tag 𝑤𝑖  in soft 

annotations.  𝑊 = {𝑤𝑖}, 𝑖 = 1,2, … , |𝑊|  is the tag sets in 

each category. Each test track is annotated with a fixed 

number of tags, which is defined as “annotation length” 𝐴. 

For comparison purpose, the annotation length 𝐴 is set same 

as [2] for each category and the results are listed in Table 3. 

It is clear from Table 3 that the system with both and 

content and context models (GMM+ME) gives better 

performance than the content model only system 

(GMM(VFS)) in [7] and the baseline MixHier system in [2]. 

The system with GMM+ME model outperforms MixHier in 

terms of average precision rate and F-score but fail in 

average recall rate. Though a good balance of precision and 

recall is always desirable, it has been argued that precision 

is more important for retrieval and recommender system to 

maintain the cohesive users. “Weakly labeled tags” in 

“Genre”, “Solo” and “Usage” benefits a lot from trigger-

based context modeling with 10.63%, 10% and 26.43% rise 

in the average per-tag precision and 12%, 6.47% and 16.59% 

rise in the average per-tag recall after applying context 

models respectively. It comes to a conclusion that trigger 

based context modeling by ME approach could improve 

performance for tags that are poorly represented by content 

models. 
 

6. CONCLUSION 
 

This paper proposes a music auto-tagging system in a two-

stage framework including the content model in our 

previous work [7] and trigger based context models. The 

former equipped with the variable feature subsets outputs 

the probabilistic semantic annotation of tracks and the latter 

refines the output probabilities of content models by 

modeling contextual information between tags via ME 

approach with selected trigger features. The system with 

combined content and context models improves by 0.74% 

and 0.58% over the content model only system while enjoys 

2.64% and 10.12% higher than the baseline in terms of 

precision and recall rates. Weakly labeled tags in “Genre”, 

“Solo” and “Usage” which are annotated by the content 

models have been improved around 10% in precision rates. 

Category A/|𝑊𝑐| Model 
Mean_ 

Precision 

Mean_ 

  Recall 
F-score 

Emotion 4/36 
MixHier 

GMM(VFS) 

GMM+ME 

0.424 
0.391 

0.395 

0.195 
0.152 

0.153 

0.267 
0.219 

0.220 

Genre 2/31 

MixHier 

GMM(VFS) 
GMM+ME 

0.171 

0.207 

0.229 

0.242 

0.200 
0.224 

0.200 

0.202 

0.226 

Instrument 4/24 

MixHier 

GMM(VFS) 
GMM+ME 

0.267 

0.227 
0.228 

0.320 

0.233 
0.233 

0.291 

0.229 
0.230 

Solo 1/9 

MixHier 

GMM(VFS) 

GMM+ME 

0.060 

0.060 

0.066 

0.261 

0.201 

0.214 

0.098 

0.093 

0.099 

Usage 2/15 

MixHier 

GMM(VFS) 

GMM+ME 

0.122 

0.227 

0.287 

0.264 

0.229 

0.267 

0.167 

0.128 

0.276 

Vocals 2/16 
MixHier 

GMM(VFS) 

GMM+ME 

0.134 
0.185 

0.189 

0.335 
0.224 

0.221 

0.191 

0.202 

0.167 

All 10/174 
MixHier 

GMM(VFS) 

GMM+ME 

0.265 
0.270 

0.272 

0.158 
0.173 

0.174 

0.198 
0.211 

0.212 
 

Table 3. A Comparison of Performance of Music Autotagging 

system. 𝐴 is the annotation length and |𝑊𝑐| is total number of 

tags in that category. MixHier  is the benchmark model 
proposed by Turnbull [2]. GMM(VFS) is based on variable 

feature sets and GMM models [7]. GMM+ME is the proposed 

two-stage framework with GMM(VFS) as the content model 

and ME as the context model.  

Category K=30 K=50 K=80 K=110 
K=173 
(all) 

Emotion 99.73% 99.04% 94.95% 92.80% 92.21% 

Genre 59.42% 74.29% 91.39% 97.87% 93.52% 

Instrument 50.58% 65.83% 90.63% 97.42% 86.92% 

Song 92.01% 92.57% 91.86% 91.20% 86.77% 

Usage 49.80% 66.27% 87.20% 91.53% 92.20% 

Vocals 45.33% 60.69% 89.06% 97.13% 90.31% 
 

Table 2. The Comparison of Trigger Accuracy Rates of Top-K 

Trigger Features in a Variety of Tag Categories. 
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