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ABSTRACT

This paper presents a new set of audio features to describe
music content based on tempo cues. Tempogram, a mid-level
representation of tempo information, is constructed to char-
acterize tempo variation and local pulse in the audio signal.
We introduce a collection of novel tempogram-based features
inspired by musicological hypotheses about the relation be-
tween music structure and its rhythmic components promi-
nent at different metrical levels. The strength of these features
is demonstrated in music structural segmentation, an impor-
tant task in Music information retrieval (MIR), using several
published popular music datasets. Results indicate that in-
corporating tempo information into audio segmentation is a
promising new direction.

Index Terms— Audio signal processing, music segmen-
tation, rhythm feature extraction, tempogram

1. INTRODUCTION

Automatic music structure analysis is one of the most impor-
tant and difficult tasks in Music information retrieval (MIR)
[1]. The main goal of music structural segmentation is to seg-
ment a piece into musically meaningful sections (e.g. verse,
chorus). Characterizing music structure has its applications
for instance in audio thumbnailing, music browsing and rec-
ommendation, as well as musicological research.

Techniques for music and audio segmentation mainly fall
into three categories: the novelty-based, homogeneity-based,
and the repetition-based approaches. The first one utilizes the
hypothesis that segment boundaries can be characterized by
prominent changes in audio features. These are typically de-
tected using a ”checkerboard” kernel correlated with the di-
agonal of the self-similarity matrix (SSM) of frame-wise au-
dio features [2]. It can also be used as the first step in more
complex segmentation methods. The homogeneity-based ap-
proach assumes stationarity in local statistical properties of
features in structural segments. This may be modeled using
machine learning and clustering techniques [3]. The princi-
ple of the repetition-based approaches is to find temporally
ordered repetitions in the feature vectors or state sequences.
Sections will then be characterized by some homogeneities

detected in the investigated features or states [4]. These latter
two approaches tend to have higher computational cost.

Various types of features have been proposed to compute
the similarity capturing timbral, harmonic or rhythmic aspects
of the input audio signal. Among these, rhythmic features are
less frequently used [1, 5]. In this study, we will use novel
rhythmic features derived from the tempo spectra of the au-
dio signal, a two-dimensional representation indicating the
strength of the local pulse over time. In related work, Grosche
et.al. also point out the potential of integrating the concept of
tempo representation into music structural segmentation [6].
Tempo-based features have also been used for cross-version
novelty detection in [7].

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the methods and procedures for constructing
the tempogram. Our new features are presented in Section 3.
Section 4 deals with music structural segmentation using the
presented features. Results and analyses are given in Section
5 and finally we conclude and provide some directions for
future work in Section 6.

2. TEMPOGRAM
A tempogram is a time-pulse representation of an audio sig-
nal laid out such that it indicates the variation of pulse strength
over time given a specific time lag l or a BPM value τ . The
construction of a tempogram can be divided into two parts.
The onset detection stage characterizes a series of musical
events constituting the basic rhythmic content of the audio.
This is followed by the estimation of local tempo using the
autocorrelation or Fourier transform of the onset detection
function (ODF) computed over short time windows [6, 8]. In
this study, we are interested in variation in long term tem-
poral structure, therefore we use the autocorrelation-based
tempogram, because this emphasizes tempo subharmonics [6]
corresponding to lower metrical levels.

2.1. Onset Detection

Similar to beat and tempo estimation systems, the tempogram
relies on detecting sudden changes in the input signal corre-
sponding to note onsets. Its quality therefore depends on the
quality of the underlying ODF. Here we assume that the tem-
pogram may be improved by using enhanced techniques for
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audio onset detection. To this end, we adopt a method using
the linearly weighted fusion of the complex domain (CD) and
SuperFlux (SF) [9] onset detection functions. This method is
proposed in a recent study, showing improved detection re-
sults over other onset detectors tested in a large-scale evalu-
ation [10]. The calculation of the proposed ODF is given in
Equation 1,

ODF (n) = α · CD(n) + (1− α) · SF (n), (1)

where n denotes the time index and α is the linear combina-
tion coefficient empirically set to 0.3 following the evaluation
in [10].

2.2. Autocorrelation-based Tempogram

The calculation of the tempogram is based on the assump-
tion that music exhibits coherent and locally periodic patterns.
These patterns may be characterized by peaks in the auto-
correlation function (ACF) of the ODF at certain time lags.
To obtain an autocorrelation-based tempogram, we compute
the local ACF of the ODF using a rectangular window W as
shown in Equation 2.

A(t, l) =

∑
n∈ZODF (n)ODF (n+ l) ·W (n− t)

2N + 1− l
, (2)

for time t ∈ Z and time lag l ∈ [0 : N ] [6]. In the experiment,
the time lag l corresponds to the tempo τ = 60/(r · l) where
r = 0.005 is the feature rate after resampling which improves
time resolution for later processing steps. In our experiments,
window sizes of 3, 5, 6 and 8s (with 0.2s overlap) were tested.

3. FEATURE DESCRIPTION OF AUDIO RHYTHMIC
CONTENT

Rhythm information may enable the identification of struc-
tural elements in music that are not necessarily recognizable
in the variation of timbre or harmony. Grosche et.al [11] in-
troduced the Cyclic tempogram and the derived predominant
local pulse (PLP) features. In this paper, we introduce addi-
tional methods to summarize the tempogram.

3.1. Dimensionality Reduction

Principal component analysis (PCA) is a multivariate data
analysis technique that aims at minimizing the correlation be-
tween variables. It provides a linear orthogonal transforma-
tion into a new coordinate system such that after the projec-
tion the majority of variance lies in the first few dimensions
and the variables become uncorrelated. In this work, the fea-
ture denoted TPCA is computed by using the first 20 principal
components derived from the tempogram using PCA.

The Discrete cosine transform (DCT) can also be used as
a dimensionality reduction technique. It is adopted as the last

step in the calculation of the Mel-frequency cepstral coeffi-
cients (MFCCs) which proved highly successful in describing
the timbral aspect of sound [12]. Inspired by this algorithm,
we introduce a feature called Tempogram cepstral coefficients
(TCC). For each tempogram frame we take the logarithm to
emphasize the underline periodicity of the ACF, then calcu-
late the DCT to obtain a compressed representation of the
rhythmic content of the audio signal. The algorithm is illus-
trated in Equation 3.

TCC(n) =

N−1∑
l=0

log(A(l))cos

(
π

N
(l +

1

2
)n

)
, (3)

where n = 0, ..., N−1. The DCT has the property to concen-
trate high energy components in the lower coefficients. Albeit
the transform becomes orthogonal with appropriate scaling,
we apply this to the log-compressed tempogram hence it en-
ables a reduced representation focussing on the overall pulse
regularity and helps to suppress noise. A 40 dimensional TCC
is used in our experiments.

3.2. Band-wise Processing

In most music genres instruments play diverse roles in pro-
ducing the overall rhythmic structure of a piece, thus each
instrument can be prominent at different metrical level
[13]. To capture this aspect we introduce two new ag-
gregate feature types. Tempo intensity (TI) describes the
strength of rhythmic components at different metrical lev-
els. This feature is computed by aggregating the tempogram
BPM bins into N bands using the following boundaries:
{440, 240, 170, 130, 110, 90, 80, 65, 55, 40} with N = 9,
based on the assumption that tempo change is more salient
over longer time periods. At time t when the tempo τ falls
into the zth band (z ∈ [0, N − 1]), we sum A(t, τ) to T (z).
Tempo components that drop out of this range will be dis-
carded as they are presumed to have less contribution to the
music structure.

Based on the assumption that small variations in less per-
ceptually salient rhythmic components may help setting struc-
tural segments apart, we compress the band-wise intensity
values using

TI(z) = T (z)θ, (4)

where the exponent θ (θ ≤ 0.5) applies a fractional root func-
tion to T (z). In the current work, we report results using the
experimentally defined value of 0.4. This processing was in-
spired by and to some extent analogous to the calculation of
perceived loudness in Moore’s model [14].

The second feature, Tempo intensity ratio (TIR), describes
the relative perceived salience of individual rhythmic compo-
nents by calculating the intensity ratio of each band as defined
above. The computation is given by Equation 5:

TIR(z) =
T (z)∑N−1
z=0 T (z)

. (5)
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Fig. 1: Tempogram cepstral coefficients (TCC) (top) and Tempo intensity ratio (TIR) (bottom) for audio example Glamorama
by Alex Q. The vertical lines and annotated texts indicate segment boundaries and section types.

In Fig. 1, two of the above introduced features of a piece
of popular music are demonstrated in comparison with the
annotated segment boundaries.

4. STRUCTURAL SEGMENTATION EXPERIMENT

The above described features (TCC, TPCA, TI, TIR) were as-
sessed in the music structural segmentation task. First, tem-
pogram features were extracted for two audio collections con-
stituting our datasets. The features were then evaluated both
individually and in combination. The rest of this section de-
scribes the datasets used for the evaluation as well as the seg-
mentation process.

4.1. Dataset

In this study, we use two datasets with a large range of popular
songs. The first is the SALAMI Internet archive dataset [15]
denoted S-IA. It is composed of 272 popular pieces with a
large variety of styles, regions and time periods. The second
is the ISOPHONICS dataset from Queen Mary University of
London1, denoted ISO in the remainder of the paper. It is
composed of 28 pieces of pop music, half of which are from
The Beatles and the rest consists of Zweieck, Queen, Michael
Jackson and Carole King. All audio files are sampled at 44.1
KHz and 16 bits per sample.

4.2. Similarity Analysis and Segmentation

A simple segment detection algorithm is used in this work in-
spired by [2]. A Self-similarity matrix (SSM) is constructed
by calculating the pairwise Euclidean distance between vec-
tors constituting the normalized feature matrix. A Gaussian-
tapered checkerboard kernel is correlated along the main di-
agonal of the similarity matrix yielding a temporal novelty
curve of the whole piece. In our experiments, a kernel size of
64 was used.

1http://www.isophonics.net/datasets

Post-processing and peak picking is then applied to the
derived novelty curve to select prominent peaks as segment
boundaries. To reduce noise that interferes with the selection
of true boundaries, four processing techniques are applied:
i) normalization using exponential weighting followed by, ii)
zero-phase low-pass filtering for smoothing the novelty curve,
iii) adaptive thresholding using a median filter and finally iv)
polynomial fitting based peak selection, where coefficients of
polynomials fitted around local maxima are used to accept or
reject peaks. This post-processing and peak picking strategy
follows our previous work [10].

5. RESULTS AND ANALYSIS

5.1. Segmentation Results

We use pairwise segment boundary recovery rate and me-
dian distance between the closest annotated boundaries and
detected boundaries as indicators to evaluate the segmenta-
tion results. Detection rates under different tempogram win-
dow sizes are reported, as illustrated in Table 1. The S-IA
dataset offers an informative comparison with the state of
the art. Our results have surpassed the best results on the
SALAMI dataset in the MIREX 2013 structural segmenta-
tion task (F=0.5193). We performed statistical significance
test using the audio content in the overlapping set between S-
IA and MIREX. Pairwise Wilcoxon Signed-Rank test shows
significant improvement over the best performing algorithm
[16] in MIREX2 when the window length is set to 5 or 6s.

From Table 1 we can observe a notably higher recall (R)
than precision rate (P) and this phenomenon is consistent un-
der different sensitivity settings for boundary detection. This
suggests that the tempogram features are relatively robust in

2MIREX structural segmentation 2013 results : http://music-ir.
org/mirex/wiki/2013:MIREX2013_Results The Internet archive
(S-IA) dataset and the MIREX testset are subsets of the SALAMI Dataset but
they are not equivalent. Data for individual audio files were obtained from
MIREX to provide a fair comparison in the statistical test.
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time window = 3s time window = 5s time window = 6s time window = 8s
P R F dAD dDA P R F dAD dDA P R F dAD dDA P R F dAD dDA

S-IA 0.5164***0.4346***0.4548 2.08 2.14 0.4483 0.8437***0.5551***0.73 2.18 0.4462 0.8542***0.5675***0.70 2.16 0.5347***0.5143***0.5236 2.20 2.13

ISO 0.3828 0.3707 0.3716 2.55 2.17 0.3538 0.7949 0.4757 0.84 2.17 0.3532 0.7932 0.4756 0.77 2.10 0.4421 0.4813 0.4478 1.86 1.99

Table 1: Segmentation results on S-IA and ISO dataset. P, R, F: Segment boundary recovery precision, recall and F-measure
rate measured at 3s; dAD: Median distance from annotated segment boundaries to the closest detected boundaries; dDA: Median
distance from detected segment boundaries to the closest annotated boundaries. *, ** and *** denote the presence of significant
difference in P, R, and F between our results and the best performing algorithm in MIREX 2013 [16] for the SALAMI dataset
at the level of 0.05, 0.01 and 0.001 using the Wilcoxon Signed-Rank test.

detecting true segment boundaries. However, a deficiency lies
in the emergence of false positives, which leads to a lower
precision hence bringing down the overall F-measure.

5.2. Discussion

The tempogram is built by using the local periodicity of
the onset detection function, which identifies the amplitude,
phase or other changes in the spectrogram of the input audio
signal. Therefore, spectral information is not disregarded,
rather, it is abstracted and reformed with the rhythmic cues
emphasized. The fact that the features are tested on a collec-
tion of pop music instead of hand selected pieces with well
defined rhythmic patterns indicates their general applicability
to music content description.

To compare the performance of each feature used in the
segmentation, we repeated the experiments by using each in-
dividual feature under the same experimental conditions on
the S-IA dataset. The time window was set to 6s. Results are
given by Table 2. All features exhibit quantitatively similar
performances with an average F-measure of 0.5521 when the
boundary recovery is measured at 3s. However, when mea-
sured at a finer scale (0.5s), a notable drop is observed. While
the results obtained for all investigated features are better than
the state of the art under a looser scale, they become worse at
0.5s. We can hypothesize this difference is due to the fact
that the tempogram calculation utilizes larger window sizes
compared to other algorithms reported in MIREX.

To investigate whether the difference in the performance
of the four features is statistically significant, we used the
Friedman test and obtained a p-value of 0.0008 for the F-
measure at 3s and 0.3127 at 0.5s. This discrepancy may be
explained by the grater variability of precision and recall un-
der looser conditions, but does not allow for a consistent hy-
pothesis about the complementary nature of the features.

The results indicate that the overall precision of the
method introduced here could be improved. A balanced
window length of 5 to 6s achieves better overall results and
provides the best recall. However, we can observe from Table
1 that when the time window is set to 5s or 6s, lower precision
is obtained compared to 3s or 8s, with the longest window
yielding the highest precision. A possible explanation is that
spurious peaks are suppressed due to longer window, though

P(3s) R(3s) F(3s) P(0.5s) R(0.5s) F(0.5s) dAD dDA
TCC 0.4450 0.8315 0.5488 0.1054 0.2021 0.1305 0.72 2.12
TPCA 0.4720 0.7759 0.5527 0.1065 0.1790 0.1253 0.82 2.17
TI 0.4511 0.8167 0.5525 0.1068 0.1986 0.1313 0.77 2.18
TIR 0.4658 0.7911 0.5543 0.1090 0.1913 0.1306 0.81 2.16

Table 2: Segmentation results on S-IA dataset using TCC,
TPCA, TI and TIR (time window = 6s). P(3s), R(3s), F(3s):
Segment boundary recovery precision, recall and f-measure
rate at 3s; P(0.5s), R(0.5s), F(0.5s): Segment boundary re-
covery precision, recall and f-measure rate at 0.5s.

there is a drop in recall as less detail is exhibited in the SSM.
The results may be improved by incorporating other musi-
cal information into the processing, for instance, by setting
the window size in a tempo dependent fashion or using beat
synchronous analysis windows.

6. CONCLUSION AND FUTURE WORK

In this paper, we studied a mid-level time-pulse representa-
tion of audio and presented a set of novel features to describe
audio content. These features were applied to the music seg-
mentation task and evaluated on two publicly available pop-
ular music databases. Our results indicate strong capacity of
the tempogram features in describing music structure.

Aiming at a more comprehensive feature representation,
in future work, we will combine the presented tempogram
features with timbral, harmonic or other spectral features
commonly used for audio segmentation. A validation of the
selection of tempo bands and the hypothesis related to percep-
tual salience of long-term temporal structure will be carried
out in future experiments. Promising directions lie also in
the use of probabilistic models to generalize the feature space
and suppress redundant information in the detection to im-
prove precision. An investigation for systematic differences
between the boundaries detected by our method and those in
the annotations may also contribute to refining the estima-
tion. Future work includes exploiting possible relationships
between rhythm patterns using supervised learning. We also
aim to investigate the applicability of tempogram to other
research topics such as music genre recognition.
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